Search Results
Search for other papers by MJ Engelbregt in
Google Scholar
PubMed
Search for other papers by MM van Weissenbruch in
Google Scholar
PubMed
Search for other papers by C Popp-Snijders in
Google Scholar
PubMed
Search for other papers by HA Delemarre-van de Waal in
Google Scholar
PubMed
In the present study we examined the consequences of intrauterine growth retardation and postnatal food restriction on the maturational process of sexual development by studying onset of first cycle. In addition, we investigated the effect of pregnant mare serum gonadotropin (PMSG) on ovarian growth and ovulation in intrauterine growth-retarded (IUGR) and postnatally food-restricted (PFR) rats. Intrauterine growth retardation was induced by uterine artery ligation on day 17 of gestation and food restriction was achieved by enlarging the litter to 20 pups per mother from day 2 after birth until weaning (day 24). In control rats, vaginal opening and the first cycle took place on the same day. In IUGR rats, uncoupling occurred between vaginal opening and the first cycle. Vaginal opening was delayed (P<0.05) and the first cycle was even further delayed (P<0.01) compared with controls. Body weight in IUGR rats was lower (P<0.05) at vaginal opening, but at first cycle and after stimulation with 50 IU PMSG in the first cycle it was similar to that in controls. In the ovaries of IUGR rats, the numbers of primordial (P<0.05), growing (P<0.01) and antral follicles (P<0.01), and the total number of follicles (P<0.01) were lower than in controls after stimulation with 50 IU PMSG at first cycle. The number of corpora lutea in the ovaries of the IUGR rats and the controls was similar and reflected superovulation. In the PFR rats, vaginal opening occurred at the same time as in control rats, but at a lower body weight (P<0.01). First cycle was much delayed (P<0.01), by which time body weight was greater (P<0.01) than that of controls at first cycle. On the basis of the differences in weight and age between PFR rats and controls at first cycle, we performed two studies. In study A, ovaries were analysed histologically 42 h after stimulation with PMSG at first cycle of control rats and age-matched PFR rats. In study B, the ovaries of PFR rats at first cycle and age-matched control rats were examined 42 h after PMSG stimulation. In the ovaries of the PFR rats in study A, a greater total number of follicles (P<0.05) was observed, represented by a greater number of primordial follicles (P<0.01) and a lower number of antral follicles (P<0.05), including corpora lutea. The number of corpora lutea in the ovaries of the PFR rats was significantly lower than that in controls (P<0.01). The total number of follicles in the ovaries of the PFR rats of study B did not differ from the age-matched controls after PMSG stimulation at first cycle, and neither did the number of the follicles in the different classes. We conclude that, in IUGR rats at first cycle, PMSG can induce multiple follicular growth and development followed by superovulation comparable to that in controls, despite a decreased total number of follicles in the ovaries. However, in PFR rats of the same age, the ovary is not capable of responding adequately to PMSG, despite a greater total number of follicles. Stimulation with PMSG at first cycle resulted in follicular growth and superovulation comparable to those in age-matched controls. Undernutrition in different critical time periods around birth in the rat leads to ovarian development in such a way that, in both groups, an increased risk of reduced reproductive capacity can be expected.
Search for other papers by D D'Antona in
Google Scholar
PubMed
Search for other papers by FM Reis in
Google Scholar
PubMed
Search for other papers by C Benedetto in
Google Scholar
PubMed
Search for other papers by LW Evans in
Google Scholar
PubMed
Search for other papers by NP Groome in
Google Scholar
PubMed
Search for other papers by DM de Kretser in
Google Scholar
PubMed
Search for other papers by EM Wallace in
Google Scholar
PubMed
Search for other papers by F Petraglia in
Google Scholar
PubMed
Activin A levels are elevated in maternal serum of pregnant women with hypertensive disturbances. Because follistatin is a circulating binding protein for activin A, the present study was designed to evaluate whether serum follistatin and activin A levels also change in patients with hypertensive disorders in the last gestational trimester. The study design was a controlled survey performed in the setting of an academic prenatal care unit. Healthy pregnant women (controls, n=38) were compared with patients suffering from pregnancy-induced hypertension (PIH, n=18) or pre-eclampsia (n=16). In addition, the study included a subset of patients with pre-eclampsia associated with intrauterine growth restriction (IUGR, n=5). Maternal blood samples were withdrawn at the time of diagnosis (patients) or in a random prenatal visit (controls), and serum was assayed for follistatin and activin A levels using specific enzyme immunoassays. Hormone concentrations were corrected for gestational age by conversion to multiples of median (MoM) of the healthy controls of the same gestational age. Follistatin levels were not different between controls and patients, while activin A levels were significantly increased in patients with PIH (1.8 MoM), pre-eclampsia (4.6 MoM), and pre-eclampsia+IUGR (3.2 MoM, P<0.01, ANOVA). The ratio between activin A and follistatin was significantly increased in patients with PIH (1.5 MoM) and was further increased in patients with pre-eclampsia (4.5 MoM) and in the group with pre-eclampsia+IUGR (2.6 MoM). Follistatin levels were positively correlated with gestational age in control subjects (r=0. 36, P<0.05) and in patients with PIH (r=0.46, P<0.05) or pre-eclampsia (r=0.61, P<0.01), while activin A correlated with gestational age only in the healthy control group (r=0.69, P<0.0001). The finding of apparently normal follistatin and high activin A levels in patients with PIH and pre-eclampsia suggests that unbound, biologically active, activin A is increased in women with these gestational diseases.
Search for other papers by EC Jensen in
Google Scholar
PubMed
Search for other papers by JE Harding in
Google Scholar
PubMed
Search for other papers by MK Bauer in
Google Scholar
PubMed
Search for other papers by PD Gluckman in
Google Scholar
PubMed
It has been shown that IGF-I has an anabolic effect in the normal fetus. However, there is evidence to suggest that there may be IGF-I resistance in the growth retarded fetus. Therefore, we investigated the effects of acute IGF-I infusion to chronically catheterised fetal sheep. At 128 days gestation, fetuses underwent a 4 h infusion of IGF-I (50 microg/kg/h). Three groups of animals were studied. Nine normally grown fetuses were studied as controls. Embolised animals (n=8) received microspheres into the uterine vasculature, and animals with spontaneous intra-uterine growth retardation (IUGR animals) (n=6) were fetuses found at post mortem to be spontaneously growth restricted. The effects of IGF-I infusion on feto-placental carbohydrate and protein metabolism were similar in our control group to previous similar experiments. IGF-I infusion decreased fetal blood glucose, oxygen, urea and amino-nitrogen concentrations, and inhibited placental lactate production. The same fetal blood metabolite concentrations also fell during IGF-I infusion in the embolised fetuses, but the effect on placental lactate production was not seen. The only effect of IGF-I infusion in the spontaneous IUGR animals was a fall in fetal blood amino-nitrogen concentrations. We conclude that fetal IGF-I infusion does not have the same anabolic effects in the growth retarded fetus as the normal fetus. In addition, the effects of IGF-I were different in the two growth retarded groups. Our data support previous evidence that the growth retarded fetus has altered IGF-I sensitivity, and this may vary depending on the cause, severity and duration of growth retardation.
Search for other papers by S M Woodall in
Google Scholar
PubMed
Search for other papers by B H Breier in
Google Scholar
PubMed
Search for other papers by B M Johnston in
Google Scholar
PubMed
Search for other papers by P D Gluckman in
Google Scholar
PubMed
Abstract
While it is well established that severe maternal undernutrition during pregnancy causes intrauterine growth retardation (IUGR), there has been relatively little study of the endocrine consequences and postnatal development of growth-retarded offspring. We have developed a model in the rat of IUGR by nutritional restriction of the mother throughout gestation and have examined the effects of fetal growth retardation on the endocrine and metabolic status during the perinatal period. Timed matings were performed in Wistar rats and dams were randomly assigned to one of two dietary treatment groups. Food was available ad libitum throughout pregnancy to a control group (ad libitum group) and a restricted group was fed 30% of the ad libitum intake (restricted fed group). After birth, food was available ad libitum in both groups and litter size was adjusted to eight pups per litter. Dams lost a significant amount of body weight throughout gestation due to undernutrition but were able to catch up to the ad libitum group by day 10 postnatally. Litter size was not affected by maternal undernutrition. Maternal plasma IGF-I levels were significantly reduced in the restricted fed group throughout gestation (P<0·001) but were not different postnatally. Maternal plasma IGF-binding proteins (IGFBPs)-1, -2 and -3 were significantly (P<0·05) increased in the restricted fed dams. The mean body weights of fetuses in late gestation from the restricted fed dams were significantly lower (P<0·001) in comparison with fetuses from control dams. Placental weights were also significantly (P<0·01) reduced in the restricted fed compared with control dams. Body weights were significantly lower in the offspring of restricted fed dams than control dams from birth (P<0·01) until 90 days of age (P<0·05). Nose–rump length was reduced in the fetuses of the restricted fed group at day 22 of gestation (P<0·001) until weaning (P<0·05). Plasma IGF-I levels were significantly reduced in the pups of restricted fed dams from day 22 of gestation (P<0·01) until postnatal day 9 (P<0·05) but were not significantly different at the later time-points. Plasma insulin levels were significantly reduced in the pups of restricted fed dams at birth (P<0·05) but not at later time-points. Plasma IGFBP-1 and -2 levels were significantly increased in the offspring from restricted fed dams at day 22 of gestation, at birth and at day 9 postnatally (P<0·05). 125I-Bovine GH specific binding to liver membranes was significantly lower (P<0·05) in offspring from restricted fed dams at 21 days of age but not at 90 days of age. These data demonstrate that nutritional deprivation in the pregnant rat leads to IUGR and postnatal growth failure and to changes in allometric growth patterns and endocrine parameters of the somatotrophic axis postnatally.
Journal of Endocrinology (1996) 150, 231–242
Search for other papers by J Lesage in
Google Scholar
PubMed
Search for other papers by D Hahn in
Google Scholar
PubMed
Search for other papers by M Leonhardt in
Google Scholar
PubMed
Search for other papers by B Blondeau in
Google Scholar
PubMed
Search for other papers by B Breant in
Google Scholar
PubMed
Search for other papers by JP Dupouy in
Google Scholar
PubMed
Fetal intrauterine growth restriction (IUGR) is a frequently occurring and serious complication of pregnancy. Infants exposed to IUGR are at risk for numerous perinatal morbidities, including hypoglycemia in the neonatal period, as well as increased risk of later physical and/or mental impairments, cardiovascular disease and non-insulin-dependent diabetes mellitus. Fetal growth restriction most often results from uteroplacental dysfunction during the later stage of pregnancy. As glucose, which is the most abundant nutrient crossing the placenta, fulfills a large portion of the fetal energy requirements during gestational development, and since impaired placental glucose transport is thought to result in growth restriction, we investigated the effects of maternal 50% food restriction (FR50) during the last week of gestation on rat placental expression of glucose transporters, GLUT1, GLUT3 and GLUT4, and on plasma glucose content in both maternal and fetal compartments. Moreover, as maternal FR50 induces fetal overexposure to glucocorticoids and since these hormones are potent regulators of placental glucose transporter expression, we investigated whether putative alterations in placental GLUT expression correlate with changes in maternal and/or fetal corticosterone levels. At term (day 21 of pregnancy), plasma glucose content was significantly reduced (P<0.05) in mothers subjected to FR50, but was not affected in fetuses. Food restriction reduced maternal body weight (P<0.001) but did not affect placental weight. Plasma corticosterone concentration, at term, was increased (P<0.05) in FR50 mothers. Fetuses from FR50 mothers showed reduced body weight (P<0.001) but higher plasma corticosterone levels (P<0.05). Adrenalectomy (ADX) followed by corticosterone supplementation of the mother prevented the FR50-induced rise in maternal plasma corticosterone at term. Food restriction performed on either sham-ADX or ADX mothers induced a similar reduction in the body weight of the pups at term (P<0.01). Moreover, plasma corticosterone levels were increased in pups from sham-ADX FR50 mothers (P<0.01) and in pups from ADX control mothers (P<0.01). Western blot analysis of placental GLUT proteins showed that maternal FR50 decreased placental GLUT3 protein levels in all experimental groups at term (P<0.05 and P<0.01), but did not affect either GLUT1 or GLUT4 protein levels. Northern blot analysis of placental GLUT expression showed that both GLUT1 and GLUT3 mRNA were not affected by the maternal feeding regimen or surgery. We concluded that prolonged maternal malnutrition during late gestation decreases maternal plasma glucose content and placental GLUT3 glucose transporter expression, but does not obviously affect fetal plasma glucose concentration. Moreover, the present results are not compatible with a role of maternal corticosterone in the development of growth-restricted rat fetuses.
Search for other papers by SM Woodall in
Google Scholar
PubMed
Search for other papers by BH Breier in
Google Scholar
PubMed
Search for other papers by BM Johnston in
Google Scholar
PubMed
Search for other papers by NS Bassett in
Google Scholar
PubMed
Search for other papers by R Barnard in
Google Scholar
PubMed
Search for other papers by PD Gluckman in
Google Scholar
PubMed
Increasing evidence from human epidemiological studies suggests that poor growth before birth is associated with postnatal growth retardation and the development of cardiovascular disease in adulthood. We have shown previously that nutritional deprivation in the pregnant rat leads to intrauterine growth retardation (IUGR), postnatal growth failure, changes in the endocrine parameters of the somatotrophic axis, and to increased blood pressure in later life. In the present study, we investigated whether administration of insulin-like growth factor-I (IGF-I) or bovine growth hormone (GH) during pregnancy could prevent IUGR and/or alter long-term outcome. Dams from day 1 of pregnancy throughout gestation received a diet of ad libitum available food or a restricted dietary intake of 30% of ad libitum fed dams. From day 10 of gestation, dams were treated for 10 days with three times daily subcutaneous injections of saline (100 microl), IGF-I (2 micrograms/g body weight) or GH (2 micrograms/g body weight). Maternal weight gain was significantly increased (P<0.001) in ad libitum fed dams treated with GH, (98.9+/-4.73 g) compared with the IGF-I (80.5+/-2.17 g) and saline-treated (70.7+/-2.65 g) groups. There was a small increase in maternal weight gain (P<0.06) in 30% ad libitum fed dams following GH (16.3+/-2.47 g) and IGF-I (15.8+/-1.97 g) treatment compared with saline (9.2+/-1.96 g). Whole spleen, kidney and carcass weights were significantly (P<0.05) increased in ad libitum fed and 30% ad libitum fed dams with GH treatment. Circulating IGF-I was significantly increased (P<0.001) in ad libitum fed dams with both IGF-I (369.6+/-32.33 ng/ml) and GH (457.9+/-33.32 ng/ml) compared with saline treatment (211.7+/-14.02 ng/ml), and with GH (223.4+/-23.72 ng/ml) compared with saline treatment (112.0+/-7.33 ng/ml) in 30% ad libitum fed dams. Circulating GH binding protein (GHBP) levels were significantly reduced (P<0.05) in GH-treated (299.1+/-51.54 ng/ml) compared with saline-treated (503.9+/-62.43 ng/ml) ad libitum fed dams, but were not altered in 30% ad libitum fed dams. There was no significant effect of either IGF-I or GH treatment on fetal weight, placental weight, fetal organ weights or circulating IGF-I levels in both ad libitum fed and 30% ad libitum fed fetuses. Offspring of 30% ad libitum fed dams remained significantly growth retarded postnatally and showed elevated blood pressure in later life. The increased maternal weight gain following IGF-I or GH administration, without an effect on fetal and placental weights, suggests a modification in the mode of maternal nutrient repartitioning during mid to late pregnancy at the expense of the fetus.
Search for other papers by TR Regnault in
Google Scholar
PubMed
Search for other papers by RJ Orbus in
Google Scholar
PubMed
Search for other papers by FC Battaglia in
Google Scholar
PubMed
Search for other papers by RB Wilkening in
Google Scholar
PubMed
Search for other papers by RV Anthony in
Google Scholar
PubMed
Pregnant ewes were exposed chronically to thermoneutral (TN; 20+/-2 degrees C, 30% relative humidity; n=8) or hyperthermic (HT; 40+/-2 degrees C 12 h/day, 35+/-2 degrees C 12 h/day, 30% relative humidity, n=6) environments between days 37 and 93 of pregnancy. Ewes were killed following 56 days of exposure to either environment (days in treatment (dit)), corresponding to 93+/-1 day post coitus (dpc). Maternal core body temperatures (CBT) in HT ewes were significantly elevated above the TN ewes (HT; 39.86+/-0.1 degrees C vs TN; 39.20+/-0.1 degrees C; P<0.001). Both groups of animals displayed circadian CBT, though HT ewes had elevated amplitudes (HT; 0.181+/-0.002 degrees C vs TN; 0.091+/-0.002 degrees C; P<0.001) and increased phase shift constants (HT; 2100 h vs TN; 1800 h; P<0.001). Ewes exposed to chronic heat stress had significantly reduced progesterone and ovine placental lactogen (oPL) concentrations from 72 and 62 dpc respectively (P<0.05), corresponding to approximately 30 dit. However, when compared with the TN ewes, HT cotyledonary tissue oPL mRNA and protein concentrations were not significantly different (P>0.1). Prolactin concentrations rose immediately upon entry into the HT environment, reaching concentrations approximately four times that of TN ewes, a level maintained throughout the study (HT; 216.31+/-32.82 vs TN; 54. 40+/-10.0; P<0.0001). Despite similar feed intakes and euglycemia in both groups of ewes, HT fetal body weights were significantly reduced when compared with TN fetuses (HT; 514.6+/-48.7 vs TN; 703. 4+/-44.8; P<0.05), while placental weights (HT; 363.6+/-63.3 vs TN; 571.2+/-95.9) were not significantly affected by 56 days of heat exposure. Furthermore, the relationship between body weight and fetal length, the ponderal index, was significantly reduced in HT fetuses (HT; 3.01+/-0.13 vs TN; 3.57+/-0.18; P<0.05). HT fetal liver weights were also significantly reduced (HT; 27.31+/-4.73 vs TN; 45.16+/-6.16; P<0.05) and as a result, the brain/liver weight ratio was increased. This study demonstrates that chronic heat exposure lowers circulating placental hormone concentrations. The observation that PL mRNA and protein contents are similar across the two treatments, suggests that reduced hormone concentrations are the result of impaired trophoblast cell development, specifically trophoblast migration. Furthermore, the impact of heat exposure during maximal placental growth is great enough to restrict early fetal development, even before the fetal maximal growth phase (100 dpc-term). These data highlight that intrauterine growth retardation (IUGR) may result primarily from placental trophoblast cell dysfunction, and secondarily from later reduced placental size.
Search for other papers by Laura D Brown in
Google Scholar
PubMed
a smaller-than-normal placenta, with or without specific transporter deficiencies, that restricts nutrient flow from the mother to the fetus and uniquely causes intrauterine growth restriction (IUGR; Molteni et al . 1978 , Marconi et al . 2006
Basic Medical College of Nanyang Medical University, Nanyang, China
Search for other papers by Lin-guo Pei in
Google Scholar
PubMed
Search for other papers by Qi Zhang in
Google Scholar
PubMed
Search for other papers by Chao Yuan in
Google Scholar
PubMed
Search for other papers by Min Liu in
Google Scholar
PubMed
Search for other papers by Yun-fei Zou in
Google Scholar
PubMed
Search for other papers by Feng Lv in
Google Scholar
PubMed
Search for other papers by Da-ji Luo in
Google Scholar
PubMed
Search for other papers by Shan Zhong in
Google Scholar
PubMed
Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
Search for other papers by Hui Wang in
Google Scholar
PubMed
pregnancy in the United States ( Signorello & McLaughlin 2004 ). Previous studies have indicated that prenatal caffeine exposure (PCE) resulted in adverse birth outcomes, including intrauterine growth retardation (IUGR) ( Fortier et al. 1993 , Chen et al
Search for other papers by Yuan Ni in
Google Scholar
PubMed
Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
Search for other papers by Dan Xu in
Google Scholar
PubMed
Search for other papers by Feng Lv in
Google Scholar
PubMed
Search for other papers by Yang Wan in
Google Scholar
PubMed
Search for other papers by Guanlan Fan in
Google Scholar
PubMed
Search for other papers by Wen Zou in
Google Scholar
PubMed
Search for other papers by Yunxi Chen in
Google Scholar
PubMed
Search for other papers by Linguo Pei in
Google Scholar
PubMed
Search for other papers by Jing Yang in
Google Scholar
PubMed
Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
Search for other papers by Hui Wang in
Google Scholar
PubMed
retardation (IUGR) ( Spohr et al. 1993 , Nykjaer et al. 2014 ), with long-term impact on the offspring’s reproductive function ( Wilson & Handa 1997 , Dupont et al. 2012 ). A previous study showed that PEE can disrupt the development and function of