Search Results

You are looking at 1 - 4 of 4 items for :

  • 100 years of glucagon: Anniversary collection x
  • Refine by access: All content x
Clear All
Sarah L Armour Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark

Search for other papers by Sarah L Armour in
Google Scholar
PubMed
Close
,
Jade E Stanley Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

Search for other papers by Jade E Stanley in
Google Scholar
PubMed
Close
,
James Cantley Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, UK

Search for other papers by James Cantley in
Google Scholar
PubMed
Close
,
E Danielle Dean Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
Division of Diabetes, Endocrinology, & Metabolism, Vanderbilt University Medical Center School of Medicine, Nashville, Tennessee, USA

Search for other papers by E Danielle Dean in
Google Scholar
PubMed
Close
, and
Jakob G Knudsen Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark

Search for other papers by Jakob G Knudsen in
Google Scholar
PubMed
Close

committed step in de novo lipogenesis: ACC1 activity is critical for regulated glucagon secretion and alpha cell growth. Malonyl-CoA is utilised by fatty acid synthase (FASN) to generate free fatty acids, which can be converted to fatty acyl-CoA esters via

Free access
Jasleen Kaur Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

Search for other papers by Jasleen Kaur in
Google Scholar
PubMed
Close
and
Elizabeth R Seaquist Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

Search for other papers by Elizabeth R Seaquist in
Google Scholar
PubMed
Close

activated in response to a fall in plasma glucose to a value less than 70 mg/dL ( Hawkes et al. 2019 ). Activation of the sympathetic nervous system, and cortisol and growth hormone secretion also occur as the glucose falls below 60–65 mg/dL ( Hawkes et

Free access
Elliott P Brooks Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Elliott P Brooks in
Google Scholar
PubMed
Close
and
Lori Sussel Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Lori Sussel in
Google Scholar
PubMed
Close

large part due to the development and growth of advanced single-cell sequencing technologies and unbiased molecular techniques, along with the increased availability of human islets that harbor a greater proportion of α cells. Recent work has revealed

Free access
Yasminye D Pettway Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

Search for other papers by Yasminye D Pettway in
Google Scholar
PubMed
Close
,
Diane C Saunders Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Search for other papers by Diane C Saunders in
Google Scholar
PubMed
Close
, and
Marcela Brissova Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Search for other papers by Marcela Brissova in
Google Scholar
PubMed
Close

and while our understanding of human α cell biology is ever evolving, there are many opportunities for future studies. For example, the vast majority of α cell genes altered in T2D have no known role in islet cell growth or function, emphasizing the

Free access