Search Results

You are looking at 1 - 6 of 6 items for :

  • 100 years of glucagon: Anniversary collection x
  • Refine by access: All content x
Clear All
Sarah L Armour Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark

Search for other papers by Sarah L Armour in
Google Scholar
PubMed
Close
,
Jade E Stanley Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

Search for other papers by Jade E Stanley in
Google Scholar
PubMed
Close
,
James Cantley Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, UK

Search for other papers by James Cantley in
Google Scholar
PubMed
Close
,
E Danielle Dean Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
Division of Diabetes, Endocrinology, & Metabolism, Vanderbilt University Medical Center School of Medicine, Nashville, Tennessee, USA

Search for other papers by E Danielle Dean in
Google Scholar
PubMed
Close
, and
Jakob G Knudsen Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark

Search for other papers by Jakob G Knudsen in
Google Scholar
PubMed
Close

, liver and skeletal muscle when glucose is sparse and glucagon secretion is elevated ( Felig et al. 1969 a , b , Ahlborg et al. 1974 , Mourtzakis et al. 2006 ). In the postprandial phase, sensing of these nutrients also appears important. In

Free access
Jasleen Kaur Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

Search for other papers by Jasleen Kaur in
Google Scholar
PubMed
Close
and
Elizabeth R Seaquist Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

Search for other papers by Elizabeth R Seaquist in
Google Scholar
PubMed
Close

-cells in the islets of the pancreas. In the liver, glucagon antagonizes the effects of insulin by stimulating glycogenolysis and gluconeogenesis, thereby increasing hepatic glucose output. Figure 3 Posttranslational products of proglucagon

Free access
R Paul Robertson Nutrition Department of Internal Medicine, Division of Metabolism Endocrinology, University of Washington, Seattle, Washington, USA

Search for other papers by R Paul Robertson in
Google Scholar
PubMed
Close

infused into the portal vein which delivers them to the liver sinusoids. Here, they have normal glucagon responses to amino acids but only partial responses to hypoglycemia ( Paty et al. 2002 , Rickels et al. 2015 ). In the case of autoislet

Free access
Elliott P Brooks Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Elliott P Brooks in
Google Scholar
PubMed
Close
and
Lori Sussel Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Lori Sussel in
Google Scholar
PubMed
Close

). Section 3: α cells have inherent proliferative potential Expanded α cell mass has been well documented in rodent models that have a breakdown of glucagon-liver signaling and in individuals with diabetes. Morphometric analyses of islets from humans with

Free access
James Cantley Division of Systems Medicine, School of Medicine, University of Dundee, UK

Search for other papers by James Cantley in
Google Scholar
PubMed
Close
,
Vincent Poitout Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
Department of Medicine, Université de Montréal, Montréal, QC, Canada

Search for other papers by Vincent Poitout in
Google Scholar
PubMed
Close
, and
Rebecca L Hull-Meichle Research and Development Service, VA Puget Sound Health Care System, Seattle, Washington, USA
Department of Medicine, University of Washington, Seattle, Washington, USA

Search for other papers by Rebecca L Hull-Meichle in
Google Scholar
PubMed
Close

liver and fat and in thermogenesis. This review also focuses on translational aspects of glucagon, along with current and potential future therapeutic applications. These include closed-loop bihormonal pumps for diabetes treatment and review of work

Free access
Yasminye D Pettway Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

Search for other papers by Yasminye D Pettway in
Google Scholar
PubMed
Close
,
Diane C Saunders Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Search for other papers by Diane C Saunders in
Google Scholar
PubMed
Close
, and
Marcela Brissova Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Search for other papers by Marcela Brissova in
Google Scholar
PubMed
Close

normoglycemia during fasting is achieved through its actions on the liver (reviewed extensively by Jiang & Zhang (2003 )). Briefly, activation of hepatic glucagon receptors (GcgRs) initiates a cAMP-dependent cascade that leads to simultaneous activation of

Free access