Search Results

You are looking at 1 - 6 of 6 items for :

  • "pituitary" x
  • Endocrine Society of Australia special collection x
  • Refine by access: All content x
Clear All
Sunita M C De Sousa Endocrine & Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, Australia
Adelaide Medical School, University of Adelaide, Adelaide, Australia

Search for other papers by Sunita M C De Sousa in
Google Scholar
PubMed
Close
,
Nèle F Lenders Department of Endocrinology, St Vincent’s Hospital, Sydney, NSW, Australia
Garvan Institute of Medical Research, Sydney, NSW, Australia
St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia

Search for other papers by Nèle F Lenders in
Google Scholar
PubMed
Close
,
Lydia S Lamb Garvan Institute of Medical Research, Sydney, NSW, Australia
St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia

Search for other papers by Lydia S Lamb in
Google Scholar
PubMed
Close
,
Warrick J Inder Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Australia
Academy for Medical Education, Faculty of Medicine, the University of Queensland, Brisbane, Australia

Search for other papers by Warrick J Inder in
Google Scholar
PubMed
Close
, and
Ann McCormack Department of Endocrinology, St Vincent’s Hospital, Sydney, NSW, Australia
Garvan Institute of Medical Research, Sydney, NSW, Australia
St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia

Search for other papers by Ann McCormack in
Google Scholar
PubMed
Close

Introduction The pituitary gland, residing in the bony sella turcica, is composed of the anterior lobe (adenohypophysis) derived from oral ectoderm and the posterior lobe (neurohypophysis) derived from neuroectoderm. The anterior lobe contains

Free access
Gary A Wittert Freemasons Centre for Male Health and Wellbeing, South Australian Health and Medical Research Institute, and University of Adelaide, Adelaide, South Australia, Australia

Search for other papers by Gary A Wittert in
Google Scholar
PubMed
Close
,
Mathis Grossmann Department of Medicine, The University of Melbourne and Department of Endocrinology Austin Health, Heidelberg, Australia

Search for other papers by Mathis Grossmann in
Google Scholar
PubMed
Close
,
Bu B Yeap Medical School, University of Western Australia, and Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia

Search for other papers by Bu B Yeap in
Google Scholar
PubMed
Close
, and
David J Handelsman ANZAC Research Institute, University of Sydney and Andrology Department, Concord Hospital, Sydney, New South Wales, Australia

Search for other papers by David J Handelsman in
Google Scholar
PubMed
Close

muscle progenitor cells and muscle protein synthesis and inhibits adipogenic differentiation of pluripotent stem cells ( Herbst & Bhasin 2004 ). Testosterone, following aromatisation to E2, increases growth hormone (GH) secretion from the pituitary

Free access
Ken KY Ho Garvan Institute of Medical Research, St. Vincent’s Hospital and the UNSW Sydney, Sydney, New South Wales, Australia

Search for other papers by Ken KY Ho in
Google Scholar
PubMed
Close
,
Anthony J O’Sullivan St. George Hospital and the Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia

Search for other papers by Anthony J O’Sullivan in
Google Scholar
PubMed
Close
, and
Morton G Burt Southern Adelaide Diabetes and Endocrine, Flinders Medical Centre and College of Medicine and Public Health, and Flinders University, Adelaide, South Australia, Australia

Search for other papers by Morton G Burt in
Google Scholar
PubMed
Close

physiology, diagnosis, regulatory interactions, efficacy, safety, and cost-effectiveness of GH replacement therapy covering the translational journey of replacement therapy. Physiology GH is the most abundant hormone in the adult pituitary gland

Free access
Adam Hagg School of Biomedical Sciences, University of Queensland, Brisbane, Australia

Search for other papers by Adam Hagg in
Google Scholar
PubMed
Close
,
Eliza O’Shea School of Biomedical Sciences, University of Queensland, Brisbane, Australia

Search for other papers by Eliza O’Shea in
Google Scholar
PubMed
Close
,
Craig A Harrison Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia

Search for other papers by Craig A Harrison in
Google Scholar
PubMed
Close
, and
Kelly L Walton School of Biomedical Sciences, University of Queensland, Brisbane, Australia
Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia

Search for other papers by Kelly L Walton in
Google Scholar
PubMed
Close

Structurally related activins and inhibins coordinate the hypothalamic–pituitary–gonadal axis Inhibins were first postulated a century ago as gonadally derived hormones that could influence pituitary function and follicle-stimulating hormone

Free access
Eugenie Macfarlane Bone Research Program, ANZAC Research Institute, The University of Sydney, Australia

Search for other papers by Eugenie Macfarlane in
Google Scholar
PubMed
Close
,
Hong Zhou Bone Research Program, ANZAC Research Institute, The University of Sydney, Australia

Search for other papers by Hong Zhou in
Google Scholar
PubMed
Close
, and
Markus J Seibel Bone Research Program, ANZAC Research Institute, The University of Sydney, Australia
Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, Sydney, Australia

Search for other papers by Markus J Seibel in
Google Scholar
PubMed
Close

synthesised in and released by the adrenal cortex. The synthesis and secretion of glucocorticoids is controlled by the hypothalamus and pituitary where signals such as light, exercise, hypoglycaemia, infection, injury, or stress trigger the hypothalamic

Restricted access
Chau Thien Tay Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
Department of Endocrinology and Diabetes, Monash Health, Victoria, Australia

Search for other papers by Chau Thien Tay in
Google Scholar
PubMed
Close
,
Rhonda Garrad Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia

Search for other papers by Rhonda Garrad in
Google Scholar
PubMed
Close
,
Aya Mousa Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia

Search for other papers by Aya Mousa in
Google Scholar
PubMed
Close
,
Mahnaz Bahri Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia

Search for other papers by Mahnaz Bahri in
Google Scholar
PubMed
Close
,
Anju Joham Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
Department of Endocrinology and Diabetes, Monash Health, Victoria, Australia

Search for other papers by Anju Joham in
Google Scholar
PubMed
Close
, and
Helena Teede Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
Department of Endocrinology and Diabetes, Monash Health, Victoria, Australia

Search for other papers by Helena Teede in
Google Scholar
PubMed
Close

a feedback loop along the hypothalamic-pituitary-gonadal axis, the underlying causes of this syndrome can vary in their tissues and pathways of origin and nonetheless result in the same PCOS phenotype’ ( Dapas & Dunaif 2022 ). Figure 1 Genomic

Free access