Search Results
Department of Pediatrics, First Hospital of Xi’an, Xi’an, Shaanxi, China
Search for other papers by Weihua Liu in
Google Scholar
PubMed
Search for other papers by Yuqiang Ji in
Google Scholar
PubMed
Search for other papers by Haiping Chu in
Google Scholar
PubMed
Search for other papers by Mo Wang in
Google Scholar
PubMed
Search for other papers by Bin Yang in
Google Scholar
PubMed
Search for other papers by Chunyan Yin in
Google Scholar
PubMed
, Bilkovski et al. 2011 ). Many signal molecules of the Wnt signaling pathway play an essential role in metabolism regulation and tissue inflammation. Wnt/β-Catenin and Wnt/Ca 2+ maintain proinflammatory and anti-inflammatory factors ( Schulte et al
Search for other papers by Hannah J Welters in
Google Scholar
PubMed
Search for other papers by Alina Oknianska in
Google Scholar
PubMed
Search for other papers by Kai S Erdmann in
Google Scholar
PubMed
Search for other papers by Gerhart U Ryffel in
Google Scholar
PubMed
Search for other papers by Noel G Morgan in
Google Scholar
PubMed
PCR master mix (Rat Wnt Signalling Pathway RT2 Profiler PCR Array; SuperArray cat no. APRN-043A). The PCR was run on a Bio-Rad iCycler, with 1 cycle of 10 min at 95 °C followed by 40 cycles of 15 s at 95 °C and 1 min at 60 °C. Cycle threshold (Ct
Search for other papers by T Suwa in
Google Scholar
PubMed
Search for other papers by M Chen in
Google Scholar
PubMed
Search for other papers by CL Hawks in
Google Scholar
PubMed
Search for other papers by PJ Hornsby in
Google Scholar
PubMed
The mechanisms underlying the differentiation of the adrenal cortex into zones are unclear. Microarray studies on RNA from microdissected zona reticularis (ZR) and zona fasciculata/zona glomerulosa (ZF/ZG) derived from adult human adrenal glands showed that a gene of the dickkopf family (DKK), DKK3, is differentially expressed in the zones. The Dickkopf proteins are morphogens involved in Wnt signalling. Northern blotting showed higher DKK3 transcript levels in ZF/ZG than ZR samples. In situ hybridization on adult human adrenal gland sections showed that DKK3 expression was much higher in the ZG than in the ZF or ZR. DKK3 expression was also higher in the medulla. We screened for expression of other members of the DKK family and the related Wingless-type mouse mammary tumor virus integration site gene family (WNT), frizzled (FZD), and dishevelled (DVL) gene families. Among dickkopf family members, only DKK3 was expressed at a detectable level in both human and mouse adrenocortical RNA samples. Consistent with previously published data on the effects of Wnt4 gene disruption in the mouse, we found only WNT4 expression within the WNT family in both human and mouse RNA. Northern blotting showed that WNT4 was expressed at a higher level in ZF/ZG cells than in ZR. The higher level of DKK3 and WNT4 expression in ZF/ZG cells was confirmed by real-time PCR. In the frizzled and dishevelled families we found FZD1, FZD2 and DVL3 transcripts in human adrenocortical RNA, and FZD2 and DVL3 in mouse adrenocortical RNA. These data show that a variety of genes of the Wnt signalling pathways are expressed in the adrenal cortex. The zonal distribution of DKK3 expression suggests that it could be involved in zonal differentiation or growth.
Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, South Korea
The Howard Hughes Medical Institute and
The Department of Hematology, University of Washington, Seattle, Washington 98195, USA
Search for other papers by Won Bae Kim in
Google Scholar
PubMed
Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, South Korea
The Howard Hughes Medical Institute and
The Department of Hematology, University of Washington, Seattle, Washington 98195, USA
Search for other papers by Christopher J Lewis in
Google Scholar
PubMed
Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, South Korea
The Howard Hughes Medical Institute and
The Department of Hematology, University of Washington, Seattle, Washington 98195, USA
Search for other papers by Kelly D McCall in
Google Scholar
PubMed
Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, South Korea
The Howard Hughes Medical Institute and
The Department of Hematology, University of Washington, Seattle, Washington 98195, USA
Search for other papers by Ramiro Malgor in
Google Scholar
PubMed
Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, South Korea
The Howard Hughes Medical Institute and
The Department of Hematology, University of Washington, Seattle, Washington 98195, USA
Search for other papers by Aimee D Kohn in
Google Scholar
PubMed
Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, South Korea
The Howard Hughes Medical Institute and
The Department of Hematology, University of Washington, Seattle, Washington 98195, USA
Search for other papers by Randall T Moon in
Google Scholar
PubMed
Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, South Korea
The Howard Hughes Medical Institute and
The Department of Hematology, University of Washington, Seattle, Washington 98195, USA
Search for other papers by Leonard D Kohn in
Google Scholar
PubMed
). Over the past two decades, the 19 members of the Wnt protein family that have been found in mammals, have all been shown to be cysteine-rich glycoproteins that act as short-range ligands to i) locally activate receptor-mediated signaling pathways in a
Search for other papers by Diego Safian in
Google Scholar
PubMed
Search for other papers by Najoua Ryane in
Google Scholar
PubMed
Search for other papers by Jan Bogerd in
Google Scholar
PubMed
Reproduction and Developmental Biology Group, Institute of Marine Research, Nordnes, Bergen, Norway
Search for other papers by Rüdiger W Schulz in
Google Scholar
PubMed
, including genes belonging to the Wnt pathway ( Crespo et al. 2016 ). The Wnt signaling system is a conserved cell-to-cell communication system that consists of several Wnt ligands and receptors. This system operates in branches that differ in their
Search for other papers by Tatiana Dorfman in
Google Scholar
PubMed
Search for other papers by Yulia Pollak in
Google Scholar
PubMed
Search for other papers by Rima Sohotnik in
Google Scholar
PubMed
Search for other papers by Arnold G Coran in
Google Scholar
PubMed
Search for other papers by Jacob Bejar in
Google Scholar
PubMed
Laboratory of Intestinal Adaptation and Recovery, Departments of Pediatric Surgery B, Pathology, Section of Pediatric Surgery, The Ruth and Bruce Rappaport Faculty of Medicine, Technion‐Israel Institute of Technology, Haifa, Israel
Search for other papers by Igor Sukhotnik in
Google Scholar
PubMed
-catenin-dependent (canonical) and β-catenin-independent (noncanonical) pathways ( Lu et al . 2004 , Turashvili et al . 2006 ). The canonical Wnt signaling pathway regulates cell fate and proliferation, and this signaling is initiated by the binding of Wnt ligands to
Department of Endocrinology, FuJian Union hospital, Fuzhou, P R China
Search for other papers by Binbin Guan in
Google Scholar
PubMed
Search for other papers by Wenyi Li in
Google Scholar
PubMed
Search for other papers by Fengying Li in
Google Scholar
PubMed
Search for other papers by Yun Xie in
Google Scholar
PubMed
Search for other papers by Qicheng Ni in
Google Scholar
PubMed
Search for other papers by Yanyun Gu in
Google Scholar
PubMed
Search for other papers by Xiaoying Li in
Google Scholar
PubMed
Search for other papers by Qidi Wang in
Google Scholar
PubMed
Search for other papers by Hongli Zhang in
Google Scholar
PubMed
Search for other papers by Guang Ning in
Google Scholar
PubMed
them from binding to their receptors, thereby inhibiting the activity of the Wnt signaling pathway ( Kawano & Kypta 2003 ). SFRP5 was one of the most extensively studied proteins in adipose tissue ( Ouchi et al . 2010 , Mori et al . 2012 ). Recently
Search for other papers by Diego Safian in
Google Scholar
PubMed
Search for other papers by Jan Bogerd in
Google Scholar
PubMed
Reproduction and Developmental Biology Group, Institute of Marine Research, Nordnes, Bergen, Norway
Search for other papers by Rüdiger W Schulz in
Google Scholar
PubMed
genes belonging to the Wnt signaling pathway. Similar results were reported for rainbow trout testis tissue ( Sambroni et al. 2013 ). The Wnt signaling system is a conserved cell-to-cell communication system that consists of canonical and non
Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Bioinformatics Core Facility, University of Kansas, Lawrence, Kansas 66045, USA
Search for other papers by Virginia Rider in
Google Scholar
PubMed
Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Bioinformatics Core Facility, University of Kansas, Lawrence, Kansas 66045, USA
Search for other papers by Kazuto Isuzugawa in
Google Scholar
PubMed
Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Bioinformatics Core Facility, University of Kansas, Lawrence, Kansas 66045, USA
Search for other papers by Meryl Twarog in
Google Scholar
PubMed
Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Bioinformatics Core Facility, University of Kansas, Lawrence, Kansas 66045, USA
Search for other papers by Stacy Jones in
Google Scholar
PubMed
Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Bioinformatics Core Facility, University of Kansas, Lawrence, Kansas 66045, USA
Search for other papers by Brent Cameron in
Google Scholar
PubMed
Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Bioinformatics Core Facility, University of Kansas, Lawrence, Kansas 66045, USA
Search for other papers by Kazuhiko Imakawa in
Google Scholar
PubMed
Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Bioinformatics Core Facility, University of Kansas, Lawrence, Kansas 66045, USA
Search for other papers by Jianwen Fang in
Google Scholar
PubMed
G1 transit ( Diehl et al. 1998 ). Secondly, GSK-3β is one component of a multimeric complex containing several proteins including axin, adenomatous polyposis coli (APC), and β-catenin. Activation of the wingless (Wnt) signal transduction pathway
Search for other papers by Yarikipati Prathibha in
Google Scholar
PubMed
Search for other papers by Balasubramanian Senthilkumaran in
Google Scholar
PubMed
. Conclusion This study demonstrates that pax2 plays an important role in ovarian development and recrudescence of catfish by regulating steroidogenesis either directly or indirectly through Wnt signaling pathway as evident from transient gene