Search Results
Search for other papers by Se-Min Kim in
Google Scholar
PubMed
Search for other papers by Farhath Sultana in
Google Scholar
PubMed
Search for other papers by Steven Sims in
Google Scholar
PubMed
Search for other papers by Judit Gimenez-Roig in
Google Scholar
PubMed
Search for other papers by Victoria Laurencin in
Google Scholar
PubMed
Search for other papers by Anusha Pallapati in
Google Scholar
PubMed
Search for other papers by Satish Rojekar in
Google Scholar
PubMed
Search for other papers by Tal Frolinger in
Google Scholar
PubMed
Search for other papers by Weibin Zhou in
Google Scholar
PubMed
Search for other papers by Anisa Gumerova in
Google Scholar
PubMed
Search for other papers by Anne Macdonald in
Google Scholar
PubMed
Search for other papers by Vitaly Ryu in
Google Scholar
PubMed
Search for other papers by Daria Lizneva in
Google Scholar
PubMed
Search for other papers by Funda Korkmaz in
Google Scholar
PubMed
Search for other papers by Tony Yuen in
Google Scholar
PubMed
Search for other papers by Mone Zaidi in
Google Scholar
PubMed
of the Tshr in mice results in a low bone mass without affecting thyroid development and thyroid hormone secretion ( Abe et al. 2003 ). This study laid a firm foundation for over two decades of work that led to the discovery of diverse functions
Search for other papers by Maryam Iravani in
Google Scholar
PubMed
Search for other papers by Marie Lagerquist in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Search for other papers by Lars Sävendahl in
Google Scholar
PubMed
Introduction Longitudinal bone growth takes place in the growth plate, consisting of three layers: resting zone, proliferative zone and the hypertrophic zone. Bone growth is regulated by estrogens, acting either indirectly via the GH
Search for other papers by Timothy J Dreyer in
Google Scholar
PubMed
Search for other papers by Jacob AC Keen in
Google Scholar
PubMed
Search for other papers by Leah M Wells in
Google Scholar
PubMed
Search for other papers by Scott J Roberts in
Google Scholar
PubMed
Introduction Sclerostin is a 22 kDa secreted glycoprotein encoded by the SOST gene. It is primarily expressed by osteocytes and plays a major role in bone homeostasis, affecting bone formation and bone remodelling through its role as a
Search for other papers by R Dobie in
Google Scholar
PubMed
Search for other papers by V E MacRae in
Google Scholar
PubMed
Search for other papers by C Huesa in
Google Scholar
PubMed
Search for other papers by R van't Hof in
Google Scholar
PubMed
Search for other papers by S F Ahmed in
Google Scholar
PubMed
Search for other papers by C Farquharson in
Google Scholar
PubMed
Roith et al . 2001 ). The intimate relationship between GH and IGF1 makes it difficult to deduce the relative contributions of systemic and locally derived IGF1 to bone accrual. While Ghr −/− mice have recognised changes in skeletal mass and
Search for other papers by Bernard Freudenthal in
Google Scholar
PubMed
Search for other papers by John Logan in
Google Scholar
PubMed
Search for other papers by Sanger Institute Mouse Pipelines in
Google Scholar
PubMed
Search for other papers by Peter I Croucher in
Google Scholar
PubMed
Search for other papers by Graham R Williams in
Google Scholar
PubMed
Search for other papers by J H Duncan Bassett in
Google Scholar
PubMed
al . 2009 ). The most important risk factors for osteoporotic fracture are low bone mineral density (BMD) (clinically assessed by dual-energy X-ray absorptiometry (DEXA or DXA)), increasing age and history of fracture ( Johnell et al . 2005
Search for other papers by Cátia F Gonçalves in
Google Scholar
PubMed
Search for other papers by Qing-Jun Meng in
Google Scholar
PubMed
their precise spatial and temporal control. Remarkably, physiological functions such as longitudinal bone growth, bone remodelling, chondrocyte metabolism and cartilage matrix turnover exhibit 24-h rhythms, being controlled by the peripheral circadian
Search for other papers by M J Devlin in
Google Scholar
PubMed
Search for other papers by D J Brooks in
Google Scholar
PubMed
Search for other papers by C Conlon in
Google Scholar
PubMed
Search for other papers by M van Vliet in
Google Scholar
PubMed
Search for other papers by L Louis in
Google Scholar
PubMed
Search for other papers by C J Rosen in
Google Scholar
PubMed
Harvard Medical School, Boston, Massachusetts, USA
Search for other papers by M L Bouxsein in
Google Scholar
PubMed
Introduction Bone marrow adipose tissue (MAT) is a complex and dynamic depot that likely includes both constitutive and regulated cell populations ( Devlin & Rosen 2015 , Scheller et al . 2015 ). MAT accumulation is a normal component of
Search for other papers by K A Staines in
Google Scholar
PubMed
Search for other papers by A S Pollard in
Google Scholar
PubMed
Search for other papers by I M McGonnell in
Google Scholar
PubMed
Search for other papers by C Farquharson in
Google Scholar
PubMed
Search for other papers by A A Pitsillides in
Google Scholar
PubMed
Introduction The transition of cartilage to bone is the basis by which all long bones form. This transition is tightly regulated to ensure both permissive foetal development through endochondral ossification and postnatal longitudinal growth at the
Search for other papers by Soo Yeon Jang in
Google Scholar
PubMed
Search for other papers by Kyung Mook Choi in
Google Scholar
PubMed
Introduction The world population is rapidly aging. Maintaining independence in daily living in old age is one of the main interests in geriatric medicine, and keeping the bones and muscles healthy is crucial to a longer health span
Search for other papers by Lara H Sattgast in
Google Scholar
PubMed
Search for other papers by Adam J Branscum in
Google Scholar
PubMed
Search for other papers by Natali Newman in
Google Scholar
PubMed
Search for other papers by Steven W Gonzales in
Google Scholar
PubMed
Search for other papers by Mary Lauren Benton in
Google Scholar
PubMed
Search for other papers by Erich J Baker in
Google Scholar
PubMed
Search for other papers by Kathleen A Grant in
Google Scholar
PubMed
Search for other papers by Russell T Turner in
Google Scholar
PubMed
Search for other papers by Urszula T Iwaniec in
Google Scholar
PubMed
Introduction Long-term, chronic alcohol consumption can lead to suppression of bone turnover, and rapid changes in biochemical markers of bone turnover have been observed within hours following acute alcohol intake. Specifically, in healthy