Search Results
Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by Christina Antza in
Google Scholar
PubMed
Search for other papers by Georgios Kostopoulos in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by Samiul Mostafa in
Google Scholar
PubMed
Centre of Endocrinology Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by Krishnarajah Nirantharakumar in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Centre of Endocrinology Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by Abd Tahrani in
Google Scholar
PubMed
important link between short sleep and increased energy intake is the impact of sleep restriction or short sleep on brain activity in response to food cues. Sleep restriction is associated with greater activation of brain networks involved in reward ( Zhu
Search for other papers by Marion Régnier in
Google Scholar
PubMed
Search for other papers by Matthias Van Hul in
Google Scholar
PubMed
European Associated Laboratory (EAL) ‘NeuroMicrobiota’, Brussels/Toulouse, Belgium
Search for other papers by Claude Knauf in
Google Scholar
PubMed
European Associated Laboratory (EAL) ‘NeuroMicrobiota’, Brussels/Toulouse, Belgium
Search for other papers by Patrice D Cani in
Google Scholar
PubMed
modulating the expression of neuropeptides (i.e. increase in appetite-stimulating AgRP and decrease in appetite-suppressing α-MSH), thereby suggesting that emulsifiers may endanger health by modulating the gut-to-brain axis ( Holder et al. 2019 ). The
The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
Search for other papers by Lei Du in
Google Scholar
PubMed
Search for other papers by Yang Wang in
Google Scholar
PubMed
Search for other papers by Cong-Rong Li in
Google Scholar
PubMed
Search for other papers by Liang-Jian Chen in
Google Scholar
PubMed
Search for other papers by Jin-Yang Cai in
Google Scholar
PubMed
Search for other papers by Zheng-Rong Xia in
Google Scholar
PubMed
Search for other papers by Wen-Tao Zeng in
Google Scholar
PubMed
Search for other papers by Zi-Bin Wang in
Google Scholar
PubMed
Search for other papers by Xi-Chen Chen in
Google Scholar
PubMed
Search for other papers by Fan Hu in
Google Scholar
PubMed
Animal Core Facility, Nanjing Medical University, Nanjing, Jiangsu, China
Search for other papers by Dong Zhang in
Google Scholar
PubMed
Search for other papers by Xiao-Wei Xing in
Google Scholar
PubMed
Search for other papers by Zhi-Xia Yang in
Google Scholar
PubMed
blotting analysis using the HLA-A antibodies. (E and F) Densitometry analysis of (D). HLA-A levels in all main tissues (heart, liver, spleen, lung, kidney, brain, BAT, ovary) were similar among all four groups. Different lowercase alphabets above the
Search for other papers by Nicole G Barra in
Google Scholar
PubMed
Search for other papers by Fernando F Anhê in
Google Scholar
PubMed
Search for other papers by Joseph F Cavallari in
Google Scholar
PubMed
Search for other papers by Anita M Singh in
Google Scholar
PubMed
Search for other papers by Darryl Y Chan in
Google Scholar
PubMed
Search for other papers by Jonathan D Schertzer in
Google Scholar
PubMed
. This species requires molybdenum for dopamine dehydroxylation, which metabolizes the medication Levodopa used in Parkinson’s disease, preventing dopamine from crossing the blood-brain barrier ( Maini Rekdal et al. 2019 ). Microbial molybdenum