Search Results

You are looking at 1 - 3 of 3 items for :

  • fatty acid oxidation x
  • Insulin resistance and type 2 diabetes mellitus x
  • Refine by access: All content x
Clear All
Margaret K Hahn Centre for Addiction and Mental Health, Toronto, Ontario, Canada
Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
Banting & Best Diabetes Centre, Toronto, Ontario, Canada

Search for other papers by Margaret K Hahn in
Google Scholar
PubMed
Close
,
Adria Giacca Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
Banting & Best Diabetes Centre, Toronto, Ontario, Canada
Department of Physiology, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Adria Giacca in
Google Scholar
PubMed
Close
, and
Sandra Pereira Centre for Addiction and Mental Health, Toronto, Ontario, Canada
Department of Physiology, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Sandra Pereira in
Google Scholar
PubMed
Close

). In healthy humans and rodents during the hyperinsulinemic euglycemic clamp, inhibition of EGP is accompanied by a robust decrease in plasma concentrations of glycerol and free fatty acids, which is due to inhibition of adipose tissue lipolysis by

Open access
Sandra K Szlapinski London, Ontario, Canada

Search for other papers by Sandra K Szlapinski in
Google Scholar
PubMed
Close
and
David J Hill Diabetes, Endocrinology and Metabolism, Lawson Health Research Institute, London, Ontario, Canada
Physiology and Pharmacology, Western University, London, Ontario, Canada

Search for other papers by David J Hill in
Google Scholar
PubMed
Close

-saturated fatty acid content being more obesogenic than short-chain fatty acids ( Hariri et al. 2010 ). Independent of calorific value, the addition of lipid at the expense of carbohydrate resulted in poorer glucose tolerance ( Takahashi et al. 1999

Restricted access
Charlotte Steenblock Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany

Search for other papers by Charlotte Steenblock in
Google Scholar
PubMed
Close
,
Nicole Bechmann Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany

Search for other papers by Nicole Bechmann in
Google Scholar
PubMed
Close
,
Felix Beuschlein Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland

Search for other papers by Felix Beuschlein in
Google Scholar
PubMed
Close
,
Christian Wolfrum Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland

Search for other papers by Christian Wolfrum in
Google Scholar
PubMed
Close
, and
Stefan R Bornstein Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK

Search for other papers by Stefan R Bornstein in
Google Scholar
PubMed
Close

influence lipid metabolism in adipocytes, promoting the synthesis of lipids and fatty acids, as well as the formation of lipid droplets, while concurrently inhibiting fatty acid oxidation ( Hellerstein et al. 1993 , Amako et al. 2015 , Sanchez

Restricted access