Search Results
Search for other papers by Nicole G Barra in
Google Scholar
PubMed
Search for other papers by Fernando F Anhê in
Google Scholar
PubMed
Search for other papers by Joseph F Cavallari in
Google Scholar
PubMed
Search for other papers by Anita M Singh in
Google Scholar
PubMed
Search for other papers by Darryl Y Chan in
Google Scholar
PubMed
Search for other papers by Jonathan D Schertzer in
Google Scholar
PubMed
extraction from food ( Bäckhed et al. 2007 ). The gut microbiota can also influence blood glucose. Lower bacterial diversity correlates with insulin resistance and higher adiposity (reviewed in Zhu & Goodarzi 2020 ). Type 2 diabetes (T2D) is associated
Search for other papers by Marion Régnier in
Google Scholar
PubMed
Search for other papers by Matthias Van Hul in
Google Scholar
PubMed
European Associated Laboratory (EAL) ‘NeuroMicrobiota’, Brussels/Toulouse, Belgium
Search for other papers by Claude Knauf in
Google Scholar
PubMed
European Associated Laboratory (EAL) ‘NeuroMicrobiota’, Brussels/Toulouse, Belgium
Search for other papers by Patrice D Cani in
Google Scholar
PubMed
Introduction Obesity is linked with many cardiometabolic risk factors, such as insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). Although lowering body weight is effective for alleviating several of these
Search for other papers by Julie Rodriguez in
Google Scholar
PubMed
Search for other papers by Nathalie M Delzenne in
Google Scholar
PubMed
Glucose homeostasis disruptions are associated with changes in the gut microbiota in diabetes and obesity Obesity is often associated with a range of metabolic alterations including insulin resistance, type 2 diabetes, dyslipidemia
Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
Search for other papers by Erica Yeo in
Google Scholar
PubMed
Department of Medicine, University of Toronto, Toronto, ON, Canada
Search for other papers by Patricia L Brubaker in
Google Scholar
PubMed
Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
Department of Obstetrics, Gynecology and Pediatrics, McMaster University, Hamilton, ON, Canada
Search for other papers by Deborah M Sloboda in
Google Scholar
PubMed
facilitate reduced peripheral glucose uptake and increased hepatic glucose production, fueling the increased demand for glucose supply to the fetus ( Lain & Catalano 2007 ). The exact timing of the onset of insulin resistance remains controversial. Both human
Search for other papers by Fabio Arturo Iannotti in
Google Scholar
PubMed
Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Department of Medicine, Faculty of Medicine and School of Nutrition, Faculty of Agricultural and Food Sciences, CRIUCPQ, INAF and Centre NUTRISS, Université Laval, Québec City, Canada
Search for other papers by Vincenzo Di Marzo in
Google Scholar
PubMed
derivatives, instead, may produce either negative metabolic effects (as in the case of imidazole-propionate and phenylacetic acid) or again contribute to resolving inflammation and insulin resistance, as in the case of the two tryptophan metabolites, indole-3