Search Results

You are looking at 1 - 10 of 142 items for :

  • TRH receptor x
  • Refine by access: All content x
Clear All
Patricia Joseph-Bravo Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico

Search for other papers by Patricia Joseph-Bravo in
Google Scholar
PubMed
Close
,
Lorraine Jaimes-Hoy Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico

Search for other papers by Lorraine Jaimes-Hoy in
Google Scholar
PubMed
Close
,
Rosa-María Uribe Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico

Search for other papers by Rosa-María Uribe in
Google Scholar
PubMed
Close
, and
Jean-Louis Charli Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico

Search for other papers by Jean-Louis Charli in
Google Scholar
PubMed
Close

, Jackson 1989 ) and characterized the Trh gene ( Lee et al . 1989 ). The Trh -gene proximal promoter contains response elements (RE) to transcription factors whose binding was revealed by chromatin immunoprecipitation assays; for example, receptors for

Free access
Bert De Groef Laboratory of Comparative Endocrinology, K.U. Leuven, Naamsestraat 61, B3000 Leuven, Belgium

Search for other papers by Bert De Groef in
Google Scholar
PubMed
Close
,
Sylvia V H Grommen Laboratory of Comparative Endocrinology, K.U. Leuven, Naamsestraat 61, B3000 Leuven, Belgium

Search for other papers by Sylvia V H Grommen in
Google Scholar
PubMed
Close
, and
Veerle M Darras Laboratory of Comparative Endocrinology, K.U. Leuven, Naamsestraat 61, B3000 Leuven, Belgium

Search for other papers by Veerle M Darras in
Google Scholar
PubMed
Close

secretion ( De Groef et al. 2003 b ). The stimulating effects of TRH on thyrotropes are mediated through the type 1 TRH receptor (TRH-R1) ( De Groef et al. 2003 a ). Changes in the sensitivity of the thyrotropes to the above

Free access
P C Lisboa Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil

Search for other papers by P C Lisboa in
Google Scholar
PubMed
Close
,
E de Oliveira Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil

Search for other papers by E de Oliveira in
Google Scholar
PubMed
Close
,
A C Manhães Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil

Search for other papers by A C Manhães in
Google Scholar
PubMed
Close
,
A P Santos-Silva Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil

Search for other papers by A P Santos-Silva in
Google Scholar
PubMed
Close
,
C R Pinheiro Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil

Search for other papers by C R Pinheiro in
Google Scholar
PubMed
Close
,
V Younes-Rapozo Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil
Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil

Search for other papers by V Younes-Rapozo in
Google Scholar
PubMed
Close
,
L C Faustino Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil

Search for other papers by L C Faustino in
Google Scholar
PubMed
Close
,
T M Ortiga-Carvalho Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil

Search for other papers by T M Ortiga-Carvalho in
Google Scholar
PubMed
Close
, and
E G Moura Laboratory of Endocrine Physiology, Laboratory of Neurophysiology, Carlos Chagas Filho Biophysic Institute, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551‐030, Brazil

Search for other papers by E G Moura in
Google Scholar
PubMed
Close

& Seitz 1994 , St Germain et al . 2009 ). Most of actions of TH occur through the nuclear TH receptors (TR), which are encoded by two distinct genes, TRα and TRβ, located on mouse chromosomes 11 and 14. The molecular mechanism of TH action involves TR

Free access
Roger Guillemin Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA

Search for other papers by Roger Guillemin in
Google Scholar
PubMed
Close

regulate TRH gene expression via activation of intracellular signal-transducer-and-activator-of transcription 3 (STAT-3) proteins in TRH neurons, with evidence that the STAT-3 binding site on the leptin receptor is also required for the effect on TRH

Free access
Patricia C Lisboa Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Avenida 28 de setembro, 87, Rio de Janeiro, RJ 20551‐031, Brazil

Search for other papers by Patricia C Lisboa in
Google Scholar
PubMed
Close
,
Ellen P S Conceição Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Avenida 28 de setembro, 87, Rio de Janeiro, RJ 20551‐031, Brazil

Search for other papers by Ellen P S Conceição in
Google Scholar
PubMed
Close
,
Elaine de Oliveira Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Avenida 28 de setembro, 87, Rio de Janeiro, RJ 20551‐031, Brazil

Search for other papers by Elaine de Oliveira in
Google Scholar
PubMed
Close
, and
Egberto G Moura Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Avenida 28 de setembro, 87, Rio de Janeiro, RJ 20551‐031, Brazil

Search for other papers by Egberto G Moura in
Google Scholar
PubMed
Close

understanding regarding the degree of hypothyroidism previously reported in EO animal models. Because circulating thyrotropin (TSH) was unaltered in adult small litter (SL) rats, we evaluated the thyrotropin release hormone (TRH) in the hypothalamus, the TSH in

Free access
F Aréchiga-Ceballos Neurofisiología Molecular, Escuela de Dietética y Nutrición, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México, Distrito Federal, México
Neurofisiología Molecular, Escuela de Dietética y Nutrición, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México, Distrito Federal, México

Search for other papers by F Aréchiga-Ceballos in
Google Scholar
PubMed
Close
,
E Alvarez-Salas Neurofisiología Molecular, Escuela de Dietética y Nutrición, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México, Distrito Federal, México

Search for other papers by E Alvarez-Salas in
Google Scholar
PubMed
Close
,
G Matamoros-Trejo Neurofisiología Molecular, Escuela de Dietética y Nutrición, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México, Distrito Federal, México

Search for other papers by G Matamoros-Trejo in
Google Scholar
PubMed
Close
,
M I Amaya Neurofisiología Molecular, Escuela de Dietética y Nutrición, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México, Distrito Federal, México

Search for other papers by M I Amaya in
Google Scholar
PubMed
Close
,
C García-Luna Neurofisiología Molecular, Escuela de Dietética y Nutrición, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México, Distrito Federal, México

Search for other papers by C García-Luna in
Google Scholar
PubMed
Close
, and
P de Gortari Neurofisiología Molecular, Escuela de Dietética y Nutrición, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México, Distrito Federal, México

Search for other papers by P de Gortari in
Google Scholar
PubMed
Close

thyroxine (T 4 ) – as well as their degrading effects on fuel reservoirs. TRH is the hypophysiotropic factor that controls HPT axis function. This peptide is synthesized in the medial PVN (mPVN) of the hypothalamus and released into the portal blood to

Free access
T V Novoselova Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK

Search for other papers by T V Novoselova in
Google Scholar
PubMed
Close
,
R Larder University of Cambridge Metabolic Research Laboratories, MRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK

Search for other papers by R Larder in
Google Scholar
PubMed
Close
,
D Rimmington University of Cambridge Metabolic Research Laboratories, MRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK

Search for other papers by D Rimmington in
Google Scholar
PubMed
Close
,
C Lelliott Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

Search for other papers by C Lelliott in
Google Scholar
PubMed
Close
,
E H Wynn Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

Search for other papers by E H Wynn in
Google Scholar
PubMed
Close
,
R J Gorrigan Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK

Search for other papers by R J Gorrigan in
Google Scholar
PubMed
Close
,
P H Tate Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

Search for other papers by P H Tate in
Google Scholar
PubMed
Close
,
L Guasti Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK

Search for other papers by L Guasti in
Google Scholar
PubMed
Close
,
The Sanger Mouse Genetics Project Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

Search for other papers by The Sanger Mouse Genetics Project in
Google Scholar
PubMed
Close
,
S O’Rahilly University of Cambridge Metabolic Research Laboratories, MRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK

Search for other papers by S O’Rahilly in
Google Scholar
PubMed
Close
,
A J L Clark Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK

Search for other papers by A J L Clark in
Google Scholar
PubMed
Close
,
D W Logan Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

Search for other papers by D W Logan in
Google Scholar
PubMed
Close
,
A P Coll University of Cambridge Metabolic Research Laboratories, MRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK

Search for other papers by A P Coll in
Google Scholar
PubMed
Close
, and
L F Chan Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK

Search for other papers by L F Chan in
Google Scholar
PubMed
Close

Introduction Melanocortin receptor accessory protein (MRAP) and its paralogue MRAP2 are a recently identified class of small, single-pass transmembrane domain accessory proteins ( Chan et al . 2009 , Novoselova et al . 2013 ). Both MRAP and

Open access
LG Luo
Search for other papers by LG Luo in
Google Scholar
PubMed
Close
and
N Yano
Search for other papers by N Yano in
Google Scholar
PubMed
Close

Thyrotropin-releasing hormone (TRH), a hypothalamic tripeptide, is expressed in pancreatic islets at peak levels during the late gestation and early neonate period. TRH increases insulin production in cultured beta-cells, suggesting that it might play a role in regulating pancreatic beta-cell function. However, there is limited information on TRH receptor expression in the pancreas. The aim of the present study was to explore the distribution of the TRH receptor in the pancreas and its function in pancreatic beta-cells. TRH receptor type 1 (TRHR1) gene expression was detected by RT-PCR and verified by Northern blotting and immunoblotting in the beta-cell lines, INS-1 and betaTC-6, and the rat pancreatic organ. The absence of TRH receptor type 2 expression in the tissue and cells indicated the tissue specificity of TRH receptor expression in the pancreas. The TRHR1 signals (detected by in situ hybridization) were distributed not only in islets but also in the surrounding areas of the pancreatic ductal and vasal epithelia. The apparent dissociation constant value for the affinity of [(3)H]3-methyl-histidine TRH (MeTRH) is 4.19 in INS-1 and 3.09 nM in betaTC-6. In addition, TRH induced epidermal growth factor (EGF) receptor phosphorylation with a half-maximum concentration of approximately 50 nM, whereas the high affinity analogue of TRH, MeTRH, was 1 nM. This suggested that the affinity of TRH ligands for the TRH receptor influences the activation of EGF receptor phosphorylation in betaTC-6 cells. Our observations suggested that the biological role of TRH in pancreatic beta-cells is via the activation of TRHR1. Further research is required to identify the role of TRHR1 in the pancreas aside from the islets.

Free access
BH Duvilanski
Search for other papers by BH Duvilanski in
Google Scholar
PubMed
Close
,
D Pisera
Search for other papers by D Pisera in
Google Scholar
PubMed
Close
,
A Seilicovich
Search for other papers by A Seilicovich in
Google Scholar
PubMed
Close
,
M del Carmen Diaz
Search for other papers by M del Carmen Diaz in
Google Scholar
PubMed
Close
,
M Lasaga
Search for other papers by M Lasaga in
Google Scholar
PubMed
Close
,
E Isovich
Search for other papers by E Isovich in
Google Scholar
PubMed
Close
, and
MO Velardez
Search for other papers by MO Velardez in
Google Scholar
PubMed
Close

Substance P (SP) may participate as a paracrine and/or autocrine factor in the regulation of anterior pituitary function. This project studied the effect of TRH on SP content and release from anterior pituitary and the role of SP in TRH-induced prolactin release. TRH (10(-7) M), but not vasoactive intestinal polypeptide (VIP), increased immunoreactive-SP (ir-SP) content and release from male rat anterior pituitary in vitro. An anti-prolactin serum also increased ir-SP release and content. In order to determine whether intrapituitary SP participates in TRH-induced prolactin release, anterior pituitaries were incubated with TRH (10(-7) M) and either WIN 62,577, a specific antagonist of the NK1 receptor, or a specific anti-SP serum. Both WIN 62,577 (10(-8) and 10(-7) M) and the anti-SP serum (1:250) blocked TRH-induced prolactin release. In order to study the interaction between TRH and SP on prolactin release, anterior pituitaries were incubated with either TRH (10(-7) M) or SP, or with both peptides. SP (10(-7) and 10(-6) M) by itself stimulated prolactin release. While 10(-7) M SP did not modify the TRH effect, 10(-6) M SP reduced TRH-stimulated prolactin release. SP (10(-5) M) alone failed to stimulate prolactin release and markedly decreased TRH-induced prolactin release. The present study shows that TRH stimulates ir-SP release and increases ir-SP content in the anterior pituitary. Our data also suggest that SP may act as a modulator of TRH effect on prolactin secretion by a paracrine mechanism.

Free access
S. Harvey
Search for other papers by S. Harvey in
Google Scholar
PubMed
Close
,
V. L. Trudeau
Search for other papers by V. L. Trudeau in
Google Scholar
PubMed
Close
,
R. J. Ashworth
Search for other papers by R. J. Ashworth in
Google Scholar
PubMed
Close
, and
S. M. Cockle
Search for other papers by S. M. Cockle in
Google Scholar
PubMed
Close

ABSTRACT

Pyroglutamylglutamylprolineamide (pGlu-Glu-ProNH2) is a tripeptide with structural and immunological similarities to thyrotrophin-releasing hormone (TRH; pGlu-His-ProNH2). Since TRH stimulates GH secretion in domestic fowl, the possibility that pGlu-Glu-ProNH2 may also provoke GH release was investigated. Unlike TRH, pGlu-Glu-ProNH2 alone had no effect on GH release from incubated chicken pituitary glands and did not down-regulate pituitary TRH receptors. However, pGlu-Glu-ProNH2 suppressed TRH-induced GH release from pituitary glands incubated in vitro and competitively displaced [3H]methyl3-histidine2-TRH from pituitary membranes. Systemic injections of pGlu-Glu-ProNH2 had no significant effect on basal GH concentrations in conscious birds, but promptly lowered circulating GH levels in sodiumpentobarbitone anaesthetized fowl. Submaximal GH responses of conscious and anaesthetized birds to systemic TRH challenge were, however, potentiated by prior or concomitant administration of pGlu-Glu-ProNH2. These results demonstrate, for the first time, that pGlu-Glu-ProNH2 has biological activity, with inhibitory and stimulatory actions within the avian hypothalamo-pituitary axis. These results indicate that pGlu-Glu-ProNH2 may act as a TRH receptor antagonist within this axis.

Journal of Endocrinology (1993) 138, 137–147

Restricted access