Search Results

You are looking at 21 - 30 of 71 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
  • Open access x
Clear All Modify Search
Open access

Mark E Cleasby, Pauline M Jamieson and Philip J Atherton

Insulin resistance (IR) in skeletal muscle is a key defect mediating the link between obesity and type 2 diabetes, a disease that typically affects people in later life. Sarcopenia (age-related loss of muscle mass and quality) is a risk factor for a number of frailty-related conditions that occur in the elderly. In addition, a syndrome of ‘sarcopenic obesity’ (SO) is now increasingly recognised, which is common in older people and is applied to individuals that simultaneously show obesity, IR and sarcopenia. Such individuals are at an increased risk of adverse health events compared with those who are obese or sarcopenic alone. However, there are no licenced treatments for sarcopenia or SO, the syndrome is poorly defined clinically and the mechanisms that might explain a common aetiology are not yet well characterised. In this review, we detail the nature and extent of the clinical syndrome, highlight some of the key physiological processes that are dysregulated and discuss some candidate molecular pathways that could be implicated in both metabolic and anabolic defects in skeletal muscle, with an eye towards future therapeutic options. In particular, the potential roles of Akt/mammalian target of rapamycin signalling, AMP-activated protein kinase, myostatin, urocortins and vitamin D are discussed.

Open access

Dawn E W Livingstone, Sarah L Grassick, Gillian L Currie, Brian R Walker and Ruth Andrew

In obese humans, metabolism of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and A-ring reduction (by 5α- and 5β-reductases) is dysregulated in a tissue specific manner. These changes have been recapitulated in leptin resistant obese Zucker rats but were not observed in high-fat fed Wistar rats. Recent data from mouse models suggest that such discrepancies may reflect differences in leptin signalling. We therefore compared glucocorticoid metabolism in murine models of leptin deficiency and resistance. Male ob/ob and db/db mice and their respective littermate controls (n=10–12/group) were studied at the age of 12 weeks. Enzyme activities and mRNA expression were quantified in snap-frozen tissues. The patterns of altered pathways of steroid metabolism in obesity were similar in ob/ob and db/db mice. In liver, 5β-reductase activity and mRNA were increased and 11β-HSD1 decreased in obese mice, whereas 5α-reductase 1 (5αR1) mRNA was not altered. In visceral adipose depots, 5β-reductase was not expressed, 11β-HSD1 activity was increased and 5αR1 mRNA was not altered in obesity. By contrast, in subcutaneous adipose tissue 11β-HSD1 and 5αR1 mRNA were decreased. Systematic differences were not found between ob/ob and db/db murine models of obesity, suggesting that variations in leptin signalling through the short splice variant of the Ob receptor do not contribute to dysregulation of glucocorticoid metabolism.

Open access

Emma M Roberts, Michael J F Newson, George R Pope, Rainer Landgraf, Stephen J Lolait and Anne-Marie O'Carroll

The apelinergic system, comprised of apelin and its G protein-coupled receptor (APJ; APLNR as given in MGI Database), is expressed within key regions of the central nervous system associated with arginine vasopressin (AVP) synthesis and release as well as in structures involved in the control of drinking behaviour, including the magnocellular neurones of the hypothalamus, circumventricular organs, and the pituitary gland. This localisation is indicative of a possible functional role in fluid homeostasis. We investigated a role for APJ in the regulation of fluid balance using mice deficient for the receptor. Male APJ wild-type and knockout (APJ−/−) mice were housed in metabolic cages to allow determination of water intake and urine volume and osmolality. When provided with free access to water, APJ−/− mice drank significantly less than wild-types, while their urine volume and osmolality did not differ. Water deprivation for 24 h significantly reduced urine volume and increased osmolality in wild-type but not in APJ−/− mice. Baseline plasma AVP concentration increased comparably in both wild-type and APJ−/− mice following dehydration; however, APJ−/− mice were unable to concentrate their urine to the same extent as wild-type mice in response to the V2 agonist desmopressin. Analysis of c-fos (Fos as given in MGI Database) mRNA expression in response to dehydration showed attenuation of expression within the subfornical organ, accentuated expression in the paraventricular nucleus, but no differences in expression in the supraoptic nucleus nor median pre-optic nucleus in APJ−/− mice compared with wild-type. These findings demonstrate a physiological role for APJ in mechanisms of water intake and fluid retention and suggest an anti-diuretic effect of apelin in vivo.

Open access

I J Bujalska, L L Gathercole, J W Tomlinson, C Darimont, J Ermolieff, A N Fanjul, P A Rejto and P M Stewart

Glucocorticoid excess increases fat mass, preferentially within omental depots; yet circulating cortisol concentrations are normal in most patients with metabolic syndrome (MS). At a pre-receptor level, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates cortisol from cortisone locally within adipose tissue, and inhibition of 11β-HSD1 in liver and adipose tissue has been proposed as a novel therapy to treat MS by reducing hepatic glucose output and adiposity. Using a transformed human subcutaneous preadipocyte cell line (Chub-S7) and human primary preadipocytes, we have defined the role of glucocorticoids and 11β-HSD1 in regulating adipose tissue differentiation. Human cells were differentiated with 1.0 μM cortisol (F), or cortisone (E) with or without 100 nM of a highly selective 11β-HSD1 inhibitor PF-877423. 11β-HSD1 mRNA expression increased across adipocyte differentiation (P<0.001, n=4), which was paralleled by an increase in 11β-HSD1 oxo-reductase activity (from nil on day 0 to 5.9±1.9 pmol/mg per h on day 16, P<0.01, n=7). Cortisone enhanced adipocyte differentiation; fatty acid-binding protein 4 expression increased 312-fold (P<0.001) and glycerol-3-phosphate dehydrogenase 47-fold (P<0.001) versus controls. This was abolished by co-incubation with PF-877423. In addition, cellular lipid content decreased significantly. These findings were confirmed in the primary cultures of human subcutaneous preadipocytes. The increase in 11β-HSD1 mRNA expression and activity is essential for the induction of human adipogenesis. Blocking adipogenesis with a novel and specific 11β-HSD1 inhibitor may represent a novel approach to treat obesity in patients with MS.

Open access

Jarrad M Scarlett, Darren D Bowe, Xinxia Zhu, Ayesha K Batra, Wilmon F Grant and Daniel L Marks

The central melanocortin system plays a key role in the regulation of food intake and energy homeostasis. We investigated whether genetic or pharmacologic blockade of central melanocortin signaling attenuates cardiac cachexia in mice and rats with heart failure. Permanent ligation of the left coronary artery (myocardial infarction (MI)) or sham operation was performed in wild-type (WT) or melanocortin-4 receptor (MC4R) knockout mice. Eight weeks after surgery, WT-Sham mice had significant increases in lean body mass (LBM; P<0.05) and fat mass (P<0.05), whereas WT-MI did not gain significant amounts of LBM or fat mass. Resting basal metabolic rate (BMR) was significantly lower in WT-Sham mice compared to WT-MI mice (P<0.001). In contrast, both MC4-Sham and MC4-MI mice gained significant amounts of LBM (P<0.05) and fat mass (P<0.05) over the study period. There was no significant difference in the BMR between MC4-Sham and MC4-MI mice. In the second experiment, rats received aortic bands or sham operations, and after recovery received i.c.v. injections of either artificial cerebrospinal fluid (aCSF) or the melanocortin antagonist agouti-related protein (AGRP) for 2 weeks. Banded rats receiving AGRP gained significant amount of LBM (P<0.05) and fat mass (P<0.05) over the treatment period, whereas banded rats receiving aCSF did not gain significant amounts of LBM or fat mass. These results demonstrated that genetic and pharmacologic blockade of melanocortin signaling attenuated the metabolic manifestations of cardiac cachexia in murine and rat models of heart failure.

Open access

Romain Fontaine, Eirill Ager-Wick, Kjetil Hodne and Finn-Arne Weltzien

Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhβ, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.

Open access

Shona Wood and Andrew Loudon

Adaptation to the environment is essential for survival, in all wild animal species seasonal variation in temperature and food availability needs to be anticipated. This has led to the evolution of deep-rooted physiological cycles, driven by internal clocks, which can track seasonal time with remarkable precision. Evidence has now accumulated that a seasonal change in thyroid hormone (TH) availability within the brain is a crucial element. This is mediated by local control of TH-metabolising enzymes within specialised ependymal cells lining the third ventricle of the hypothalamus. Within these cells, deiodinase type 2 enzyme is activated in response to summer day lengths, converting metabolically inactive thyroxine (T4) to tri-iodothyronine (T3). The availability of TH in the hypothalamus appears to be an important factor in driving the physiological changes that occur with season. Remarkably, in both birds and mammals, the pars tuberalis (PT) of the pituitary gland plays an essential role. A specialised endocrine thyrotroph cell (TSH-expressing) is regulated by the changing day-length signal, leading to activation of TSH by long days. This acts on adjacent TSH-receptors expressed in the hypothalamic ependymal cells, causing local regulation of deiodinase enzymes and conversion of TH to the metabolically active T3. In mammals, the PT is regulated by the nocturnal melatonin signal. Summer-like melatonin signals activate a PT-expressed clock-regulated transcription regulator (EYA3), which in turn drives the expression of the TSHβ sub-unit, leading to a sustained increase in TSH expression. In this manner, a local pituitary timer, driven by melatonin, initiates a cascade of molecular events, led by EYA3, which translates to seasonal changes of neuroendocrine activity in the hypothalamus. There are remarkable parallels between this PT circuit and the photoperiodic timing system used in plants, and while plants use different molecular signals (constans vs EYA3) it appears that widely divergent organisms probably obey a common set of design principles.

Open access

Jethro S Johnson, Monica N Opiyo, Marian Thomson, Karim Gharbi, Jonathan R Seckl, Andreas Heger and Karen E Chapman

The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched ‘Western’ diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae. Our results demonstrate that (i) genetic effects on host–microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency.

Open access

Alessandro Pocai

Oxyntomodulin (OXM) is a peptide secreted from the L cells of the gut following nutrient ingestion. OXM is a dual agonist of the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) combining the effects of GLP1 and glucagon to act as a potentially more effective treatment for obesity than GLP1R agonists. Injections of OXM in humans cause a significant reduction in weight and appetite, as well as an increase in energy expenditure. Activation of GCGR is classically associated with an elevation in glucose levels, which would be deleterious in patients with T2DM, but the antidiabetic properties of GLP1R agonism would be expected to counteract this effect. Indeed, OXM administration improved glucose tolerance in diet-induced obese mice. Thus, dual agonists of the GCGR and GLP1R represent a new therapeutic approach for diabetes and obesity with the potential for enhanced weight loss and improvement in glycemic control beyond those of GLP1R agonists.

Open access

Michael J F Newson, Emma M Roberts, George R Pope, Stephen J Lolait and Anne-Marie O'Carroll

The apelinergic system has a widespread expression in the central nervous system (CNS) including the paraventricular nucleus, supraoptic nucleus and median eminence, and isolated cells of the anterior lobe of the pituitary. This pattern of expression in hypothalamic nuclei known to contain corticotrophin-releasing factor (CRF) and vasopressin (AVP) and to co-ordinate endocrine responses to stress has generated interest in a role for apelin in the modulation of stress, perhaps via the regulation of hormone release from the pituitary. In this study, to determine whether apelin has a central role in the regulation of CRF and AVP neurones, we investigated the effect of i.c.v. administration of pGlu-apelin-13 on neuroendocrine function in male mice pre-treated with the CRF receptor antagonist, α-helical CRF9–41, and in mice-lacking functional AVP V1b receptors (V1bR KO). Administration of pGlu-apelin-13 (1 mg/kg i.c.v.) resulted in significant increases in plasma ACTH and corticosterone (CORT), which were significantly reduced by pre-treatment with α-helical CRF9–41, indicating the involvement of a CRF-dependent mechanism. Additionally, pGlu-apelin-13-mediated increases in both plasma ACTH and CORT were significantly attenuated in V1bR KO animals when compared with wild-type controls, indicating a role for the vasopressinergic system in the regulation of the effects of apelin on neuroendocrine function. Together, these data confirm that the in vivo effects of apelin on hypothalamic–pituitary–adrenal neuroendocrine function appear to be mediated through both CRF- and AVP-dependent mechanisms.