Search Results
You are looking at 1 - 1 of 1 items for
- Author: Ruth A Morgan x
- Refine by access: Open Access content only x
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Search for other papers by Elisa Villalobos in
Google Scholar
PubMed
Search for other papers by Allende Miguelez-Crespo in
Google Scholar
PubMed
Scotland’s Rural College, The Roslin Institute, Easter Bush Campus, United Kingdom
Search for other papers by Ruth A Morgan in
Google Scholar
PubMed
Search for other papers by Lisa Ivatt in
Google Scholar
PubMed
Search for other papers by Mhairi Paul in
Google Scholar
PubMed
Search for other papers by Joanna P Simpson in
Google Scholar
PubMed
Search for other papers by Natalie Z M Homer in
Google Scholar
PubMed
Search for other papers by Dominic Kurian in
Google Scholar
PubMed
Search for other papers by Judit Aguilar in
Google Scholar
PubMed
Search for other papers by Rachel A Kline in
Google Scholar
PubMed
Search for other papers by Thomas M Wishart in
Google Scholar
PubMed
Centre for Systems Health and Integrated Metabolic Research, Nottingham Trent University, Nottingham, United Kingdom
Search for other papers by Nicholas M Morton in
Google Scholar
PubMed
Search for other papers by Roland H Stimson in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Mark Nixon in
Google Scholar
PubMed
Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.