Search Results
Search for other papers by Ryan A Lafferty in
Google Scholar
PubMed
Search for other papers by Laura M McShane in
Google Scholar
PubMed
Search for other papers by Zara J Franklin in
Google Scholar
PubMed
Search for other papers by Peter R Flatt in
Google Scholar
PubMed
Search for other papers by Finbarr P M O’Harte in
Google Scholar
PubMed
Search for other papers by Nigel Irwin in
Google Scholar
PubMed
, administration of the beta-cell toxin, streptozotocin (STZ), can counter beta-cell compensation and prevent such innate adaptations ( Furman 2015 ). Thus, HFF mice with STZ-induced compromised beta-cells are characterised by obstruction of the classical beta
Search for other papers by Alvaro Souto Padron in
Google Scholar
PubMed
Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil
Search for other papers by Ruy Andrade Louzada Neto in
Google Scholar
PubMed
Search for other papers by Thiago Urgal Pantaleão in
Google Scholar
PubMed
Search for other papers by Maria Carolina de Souza dos Santos in
Google Scholar
PubMed
Search for other papers by Renata Lopes Araujo in
Google Scholar
PubMed
Search for other papers by Bruno Moulin de Andrade in
Google Scholar
PubMed
Search for other papers by Monique da Silva Leandro in
Google Scholar
PubMed
Search for other papers by João Pedro Saar Werneck de Castro in
Google Scholar
PubMed
Search for other papers by Andrea Claudia Freitas Ferreira in
Google Scholar
PubMed
Search for other papers by Denise Pires de Carvalho in
Google Scholar
PubMed
/min respectively. To avoid disruption caused by adaptation to the chamber, the first 3 h (from 1800 to 2100) were excluded from the analyses. Electrocardiography Electrocardiogram recording was carried out in conscious animals by the non-invasive method. Electrodes
Search for other papers by David O'Regan in
Google Scholar
PubMed
Search for other papers by Christopher J Kenyon in
Google Scholar
PubMed
Search for other papers by Jonathan R Seckl in
Google Scholar
PubMed
Search for other papers by Megan C Holmes in
Google Scholar
PubMed
Edwards LJ 2001 Fetal growth restriction: adaptations and consequences . Reproduction 122 195 – 204 . McMullen S Langley-Evans SC 2005a Maternal low-protein diet in rat pregnancy programs blood pressure through sex
Search for other papers by David M Cartwright in
Google Scholar
PubMed
Search for other papers by Lucy A Oakey in
Google Scholar
PubMed
Search for other papers by Rachel S Fletcher in
Google Scholar
PubMed
School of Science and Technology, Nottingham Trent University, Nottingham, UK
Search for other papers by Craig L Doig in
Google Scholar
PubMed
Search for other papers by Silke Heising in
Google Scholar
PubMed
Search for other papers by Dean P Larner in
Google Scholar
PubMed
Search for other papers by Daniela Nasteska in
Google Scholar
PubMed
Search for other papers by Caitlin E Berry in
Google Scholar
PubMed
Search for other papers by Sam R Heaselgrave in
Google Scholar
PubMed
Search for other papers by Christian Ludwig in
Google Scholar
PubMed
Search for other papers by David J Hodson in
Google Scholar
PubMed
Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
Pediatric Research Center, Hospital for Child and Adolescent Medicine, Leipzig University, Leipzig, Germany
Search for other papers by Antje Garten in
Google Scholar
PubMed
– 2485 . ( https://doi.org/10.1007/s00125-007-0814-x ) Boulangé CL Claus SP Chou CJ Collino S Montoliu I Kochhar S Holmes E Rezzi S Nicholson JK Dumas ME et al . 2013 Early metabolic adaptation in C57BL/6 mice resistant to high
Search for other papers by Stuart A Lanham in
Google Scholar
PubMed
Search for other papers by Dominique Blache in
Google Scholar
PubMed
Search for other papers by Richard O C Oreffo in
Google Scholar
PubMed
Search for other papers by Abigail L Fowden in
Google Scholar
PubMed
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
Search for other papers by Alison J Forhead in
Google Scholar
PubMed
demonstrated that, while the bone size was reduced in response to pancreas deficiency in utero , metatarsal Tb bone structure was more condensed with greater structural connectivity which may be a key adaptation to maintain bone strength in precocial offspring
St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
Search for other papers by Colin P Sibley in
Google Scholar
PubMed
adaptation to pregnancy, the timing of parturition, matching of supply with demand for nutrients by the fetus to enable normal growth ( Sferruzzi-Perri & Camm 2016 ) and indeed control of placental development itself. It is therefore not surprising that
Search for other papers by Carolina Gaudenzi in
Google Scholar
PubMed
Search for other papers by Karen R Mifsud in
Google Scholar
PubMed
Search for other papers by Johannes M H M Reul in
Google Scholar
PubMed
, heterodimer with GR, or in conjunction with alternate transcription factors. Non-genomic actions Repeated observations of the speed with which some MR-dependent behavioural adaptations ensue have indicated that genomic actions are not the only
Search for other papers by Andrea Lovdel in
Google Scholar
PubMed
Search for other papers by Karla J Suchacki in
Google Scholar
PubMed
Search for other papers by Fiona Roberts in
Google Scholar
PubMed
Search for other papers by Richard J Sulston in
Google Scholar
PubMed
Search for other papers by Robert J Wallace in
Google Scholar
PubMed
Search for other papers by Benjamin J Thomas in
Google Scholar
PubMed
Search for other papers by Rachel M B Bell in
Google Scholar
PubMed
Search for other papers by Iris Pruñonosa Cervera in
Google Scholar
PubMed
Search for other papers by Gavin J Macpherson in
Google Scholar
PubMed
Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
Search for other papers by Nicholas M Morton in
Google Scholar
PubMed
Search for other papers by Natalie Z M Homer in
Google Scholar
PubMed
Search for other papers by Karen E Chapman in
Google Scholar
PubMed
Search for other papers by William P Cawthorn in
Google Scholar
PubMed
). However, CR can also promote bone loss ( Villareal et al. 2015 ) and increased susceptibility to infections ( Speakman & Mitchell 2011 ). Aside from these clinical implications, many effects of CR represent fundamental evolutionary adaptations that aid
Search for other papers by Shiho Fujisaka in
Google Scholar
PubMed
Search for other papers by Yoshiyuki Watanabe in
Google Scholar
PubMed
Search for other papers by Kazuyuki Tobe in
Google Scholar
PubMed
through modulation of bile acids and L-cell adaptation . Scientific Reports 11 23813. ( https://doi.org/10.1038/s41598-021-03396-4 ) De Vadder F Grasset E Manneras Holm L Karsenty G Macpherson AJ Olofsson LE Backhed F 2018 Gut microbiota
Search for other papers by Dawn E W Livingstone in
Google Scholar
PubMed
Search for other papers by Emma M Di Rollo in
Google Scholar
PubMed
Search for other papers by Chenjing Yang in
Google Scholar
PubMed
Search for other papers by Lucy E Codrington in
Google Scholar
PubMed
Search for other papers by John A Mathews in
Google Scholar
PubMed
Search for other papers by Madina Kara in
Google Scholar
PubMed
Search for other papers by Katherine A Hughes in
Google Scholar
PubMed
Search for other papers by Christopher J Kenyon in
Google Scholar
PubMed
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Introduction Activation of the hypothalamic–pituitary–adrenal (HPA) axis is a vital component of the stress response, driving production of glucocorticoid hormones (cortisol in humans, corticosterone in rodents) that mediate essential adaptations of