Search Results

You are looking at 21 - 30 of 31 items for :

  • adiponectin x
  • Refine by access: Open Access content only x
Clear All
F Wahab Stem Cell Biology Unit, Laboratory of Reproductive Neuroendocrinology, Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany

Search for other papers by F Wahab in
Google Scholar
PubMed
Close
,
M Shahab Stem Cell Biology Unit, Laboratory of Reproductive Neuroendocrinology, Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany

Search for other papers by M Shahab in
Google Scholar
PubMed
Close
, and
R Behr Stem Cell Biology Unit, Laboratory of Reproductive Neuroendocrinology, Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany

Search for other papers by R Behr in
Google Scholar
PubMed
Close

may alter GnIH and KP signaling is illustrated in Fig. 2 . Important candidates in this respect are peripheral metabolic cues and their receptive hypothalamic neuronal circuits. Important metabolic cues are adiponectin, glucose, ghrelin, cortisol

Open access
Mark E Cleasby Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK

Search for other papers by Mark E Cleasby in
Google Scholar
PubMed
Close
,
Pauline M Jamieson Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by Pauline M Jamieson in
Google Scholar
PubMed
Close
, and
Philip J Atherton Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, Medical School, Royal Derby Hospital, Derby, UK

Search for other papers by Philip J Atherton in
Google Scholar
PubMed
Close

maintenance ( Bujak et al. 2015 ). AMPK likely mediates the effects of adiponectin to promote macroautophagy ( Liu et al. 2015 ), which partly mediates this adipokine’s insulin-sensitising effect in muscle ( Patel et al. 2012 ). However, the effects of

Open access
Andrea Lovdel University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Andrea Lovdel in
Google Scholar
PubMed
Close
,
Karla J Suchacki University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Karla J Suchacki in
Google Scholar
PubMed
Close
,
Fiona Roberts University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Fiona Roberts in
Google Scholar
PubMed
Close
,
Richard J Sulston University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Richard J Sulston in
Google Scholar
PubMed
Close
,
Robert J Wallace Department of Orthopaedics, The University of Edinburgh, Edinburgh, UK

Search for other papers by Robert J Wallace in
Google Scholar
PubMed
Close
,
Benjamin J Thomas University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Benjamin J Thomas in
Google Scholar
PubMed
Close
,
Rachel M B Bell University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Rachel M B Bell in
Google Scholar
PubMed
Close
,
Iris Pruñonosa Cervera University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Iris Pruñonosa Cervera in
Google Scholar
PubMed
Close
,
Gavin J Macpherson Department of Orthopaedic Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK

Search for other papers by Gavin J Macpherson in
Google Scholar
PubMed
Close
,
Nicholas M Morton University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK

Search for other papers by Nicholas M Morton in
Google Scholar
PubMed
Close
,
Natalie Z M Homer University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Natalie Z M Homer in
Google Scholar
PubMed
Close
,
Karen E Chapman University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Karen E Chapman in
Google Scholar
PubMed
Close
, and
William P Cawthorn University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by William P Cawthorn in
Google Scholar
PubMed
Close

increased circulating adiponectin during caloric restriction . Cell Metabolism 20 368 – 375 . ( https://doi.org/10.1016/j.cmet.2014.06.003 ) Cawthorn WP Scheller EL Parlee SD Pham HA Learman BS Redshaw CMH Sulston RJ Burr AA Das AK Simon

Open access
Hyo Youl Moon
Search for other papers by Hyo Youl Moon in
Google Scholar
PubMed
Close
,
Parkyong Song BioSignal Network Laboratory, Division of Molecular and Life Sciences, Lee Gil Ya Cancer and Diabetes Institute, School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Engineering Building 104, 689-805 Ulsan, Republic of Korea

Search for other papers by Parkyong Song in
Google Scholar
PubMed
Close
,
Cheol Soo Choi BioSignal Network Laboratory, Division of Molecular and Life Sciences, Lee Gil Ya Cancer and Diabetes Institute, School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Engineering Building 104, 689-805 Ulsan, Republic of Korea

Search for other papers by Cheol Soo Choi in
Google Scholar
PubMed
Close
,
Sung Ho Ryu BioSignal Network Laboratory, Division of Molecular and Life Sciences, Lee Gil Ya Cancer and Diabetes Institute, School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Engineering Building 104, 689-805 Ulsan, Republic of Korea

Search for other papers by Sung Ho Ryu in
Google Scholar
PubMed
Close
, and
Pann-Ghill Suh
Search for other papers by Pann-Ghill Suh in
Google Scholar
PubMed
Close

transduction through MAP kinase cascades . Advances in Cancer Research 74 49 – 139 . ( doi:10.1016/S0065-230X(08)60765-4 ) Li L Wu L Wang C Liu L Zhao Y 2007 Adiponectin modulates carnitine palmitoyltransferase-1 through AMPK signaling

Open access
Manon M Roustit
Search for other papers by Manon M Roustit in
Google Scholar
PubMed
Close
,
Joan M Vaughan Department of Comparative Biomedical Sciences, Laboratory of Neuronal Structure and Function, Queen's Medical Research Institute, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK

Search for other papers by Joan M Vaughan in
Google Scholar
PubMed
Close
,
Pauline M Jamieson Department of Comparative Biomedical Sciences, Laboratory of Neuronal Structure and Function, Queen's Medical Research Institute, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK

Search for other papers by Pauline M Jamieson in
Google Scholar
PubMed
Close
, and
Mark E Cleasby
Search for other papers by Mark E Cleasby in
Google Scholar
PubMed
Close

– 328 . ( doi:10.1016/j.neuron.2009.07.019 ) Patel SA Hoehn KL Lawrence RT Sawbridge L Talbot NA Tomsig JL Turner N Cooney GJ Whitehead JP Kraegen EW 2012 Overexpression of the adiponectin receptor AdipoR1 in rat skeletal

Open access
I J Bujalska
Search for other papers by I J Bujalska in
Google Scholar
PubMed
Close
,
L L Gathercole
Search for other papers by L L Gathercole in
Google Scholar
PubMed
Close
,
J W Tomlinson
Search for other papers by J W Tomlinson in
Google Scholar
PubMed
Close
,
C Darimont Division of Medical Sciences, Nestle Research Center, Pfizer Global Research and Development, The Medical School, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Search for other papers by C Darimont in
Google Scholar
PubMed
Close
,
J Ermolieff Division of Medical Sciences, Nestle Research Center, Pfizer Global Research and Development, The Medical School, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Search for other papers by J Ermolieff in
Google Scholar
PubMed
Close
,
A N Fanjul Division of Medical Sciences, Nestle Research Center, Pfizer Global Research and Development, The Medical School, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Search for other papers by A N Fanjul in
Google Scholar
PubMed
Close
,
P A Rejto Division of Medical Sciences, Nestle Research Center, Pfizer Global Research and Development, The Medical School, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Search for other papers by P A Rejto in
Google Scholar
PubMed
Close
, and
P M Stewart
Search for other papers by P M Stewart in
Google Scholar
PubMed
Close

2005 C/EBPalpha regulates human adiponectin gene transcription through an intronic enhancer . Diabetes 54 1744 – 1754 . Rask E Walker BR Soderberg S Livingstone DE Eliasson M Johnson O Andrew R Olsson T 2002 Tissue-specific changes in

Open access
S Khan Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by S Khan in
Google Scholar
PubMed
Close
,
D E W Livingstone Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh, UK

Search for other papers by D E W Livingstone in
Google Scholar
PubMed
Close
,
A Zielinska College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by A Zielinska in
Google Scholar
PubMed
Close
,
C L Doig Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK

Search for other papers by C L Doig in
Google Scholar
PubMed
Close
,
D F Cobice Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by D F Cobice in
Google Scholar
PubMed
Close
,
C L Esteves Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by C L Esteves in
Google Scholar
PubMed
Close
,
J T Y Man Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by J T Y Man in
Google Scholar
PubMed
Close
,
N Z M Homer Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by N Z M Homer in
Google Scholar
PubMed
Close
,
J R Seckl Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by J R Seckl in
Google Scholar
PubMed
Close
,
C L MacKay SIRCAMS, School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, UK

Search for other papers by C L MacKay in
Google Scholar
PubMed
Close
,
S P Webster Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by S P Webster in
Google Scholar
PubMed
Close
,
G G Lavery Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK

Search for other papers by G G Lavery in
Google Scholar
PubMed
Close
,
K E Chapman Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by K E Chapman in
Google Scholar
PubMed
Close
,
B R Walker Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
Clinical & Translational Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK

Search for other papers by B R Walker in
Google Scholar
PubMed
Close
, and
R Andrew Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by R Andrew in
Google Scholar
PubMed
Close

the roles of the different tissues, with caveats discussed over the specificity of the aP2-Cre , which might be overcome by alternative Cre driver, e.g., adiponectin-Cre. Future opportunities exist using MALDI imaging to measure the distribution of

Open access
Jane J Reavey MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Jane J Reavey in
Google Scholar
PubMed
Close
,
Catherine Walker MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Catherine Walker in
Google Scholar
PubMed
Close
,
Alison A Murray MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Alison A Murray in
Google Scholar
PubMed
Close
,
Savita Brito-Mutunayagam MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Savita Brito-Mutunayagam in
Google Scholar
PubMed
Close
,
Sheona Sweeney MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Sheona Sweeney in
Google Scholar
PubMed
Close
,
Moira Nicol MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Moira Nicol in
Google Scholar
PubMed
Close
,
Ana Cambursano MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Ana Cambursano in
Google Scholar
PubMed
Close
,
Hilary O D Critchley MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Hilary O D Critchley in
Google Scholar
PubMed
Close
, and
Jacqueline A Maybin MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Jacqueline A Maybin in
Google Scholar
PubMed
Close

with obesity, providing unopposed oestrogens and increasing the risk of endometrial cancer ( Onstad et al. 2016 ). Adipose tissue is also known to produce a number of adipokines, including leptin, adiponectin, resistin and plasminogen activator

Open access
J Jeyabalan
Search for other papers by J Jeyabalan in
Google Scholar
PubMed
Close
,
M Shah
Search for other papers by M Shah in
Google Scholar
PubMed
Close
,
B Viollet Department of Veterinary Basic Sciences, INSERM, CNRS, Université Paris Decartes, INSERM, Department of Endocrinology, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
Department of Veterinary Basic Sciences, INSERM, CNRS, Université Paris Decartes, INSERM, Department of Endocrinology, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
Department of Veterinary Basic Sciences, INSERM, CNRS, Université Paris Decartes, INSERM, Department of Endocrinology, Royal Veterinary College, Royal College Street, London NW1 0TU, UK

Search for other papers by B Viollet in
Google Scholar
PubMed
Close
,
J P Roux Department of Veterinary Basic Sciences, INSERM, CNRS, Université Paris Decartes, INSERM, Department of Endocrinology, Royal Veterinary College, Royal College Street, London NW1 0TU, UK

Search for other papers by J P Roux in
Google Scholar
PubMed
Close
,
P Chavassieux Department of Veterinary Basic Sciences, INSERM, CNRS, Université Paris Decartes, INSERM, Department of Endocrinology, Royal Veterinary College, Royal College Street, London NW1 0TU, UK

Search for other papers by P Chavassieux in
Google Scholar
PubMed
Close
,
M Korbonits Department of Veterinary Basic Sciences, INSERM, CNRS, Université Paris Decartes, INSERM, Department of Endocrinology, Royal Veterinary College, Royal College Street, London NW1 0TU, UK

Search for other papers by M Korbonits in
Google Scholar
PubMed
Close
, and
C Chenu
Search for other papers by C Chenu in
Google Scholar
PubMed
Close

Noda M Kita S Ueki K 2002 Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase . Nature Medicine 8 1288 – 1295 . doi:10.1038/nm788 . Yamauchi M Kambe F Cao X Lu X Kozaki

Open access
Seokwon Jo Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA

Search for other papers by Seokwon Jo in
Google Scholar
PubMed
Close
and
Emilyn U Alejandro Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA

Search for other papers by Emilyn U Alejandro in
Google Scholar
PubMed
Close

other molecules. It is a metabolically active organ that produces a variety of hormones and signaling molecules such as leptin, progesterone, adiponectin, and microRNAs (miRNAs) and more that have not been fully characterized yet ( Stern et al. 2021

Open access