Search Results
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by David Cottet-Dumoulin in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Quentin Perrier in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Vanessa Lavallard in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by David Matthey-Doret in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Laura Mar Fonseca in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Juliette Bignard in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Reine Hanna in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Géraldine Parnaud in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Fanny Lebreton in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Kevin Bellofatto in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Ekaterine Berishvili in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Thierry Berney in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Domenico Bosco in
Google Scholar
PubMed
glucagon secretion have been extensively studied as a deficit or a surplus of these hormones is associated with diabetes. Secretion of these hormones is affected by intrinsic cellular glucose sensing, along with autonomic nervous inputs and other hormones
Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
Search for other papers by Maria L Price in
Google Scholar
PubMed
Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
Search for other papers by Cameron D Ley in
Google Scholar
PubMed
Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
Search for other papers by Caroline M Gorvin in
Google Scholar
PubMed
receipt of research funding in the form of an Academy of Medical Sciences Springboard Award (Ref: SBF004|1034), which is supported by the British Heart Foundation, Diabetes UK, the Global Challenges Research Fund, the Government Department of Business
Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
Banting & Best Diabetes Centre, Toronto, Ontario, Canada
Search for other papers by Margaret K Hahn in
Google Scholar
PubMed
Banting & Best Diabetes Centre, Toronto, Ontario, Canada
Department of Physiology, University of Toronto, Toronto, Ontario, Canada
Search for other papers by Adria Giacca in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Toronto, Ontario, Canada
Search for other papers by Sandra Pereira in
Google Scholar
PubMed
Introduction Breakthroughs in metabolic research rely upon in vivo studies using animal models, usually rodents. Assessment of glucose metabolism in rodents is a key component of diabetes research. Although general guidelines for
Department of Neurosurgery, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
Search for other papers by Hiroyuki Enomoto in
Google Scholar
PubMed
Search for other papers by Kinuyo Iwata in
Google Scholar
PubMed
Search for other papers by Keisuke Matsumoto in
Google Scholar
PubMed
Search for other papers by Mai Otsuka in
Google Scholar
PubMed
Search for other papers by Akio Morita in
Google Scholar
PubMed
Search for other papers by Hitoshi Ozawa in
Google Scholar
PubMed
cells, termed KNDy neurons, are thought to be involved in generating pulsatile GnRH/LH secretion ( Lehman et al. 2010 ). Diabetes can cause erectile dysfunction in men and infertility and menstrual irregularities in women ( Gandhi et al. 2017
Search for other papers by Kristen R Lednovich in
Google Scholar
PubMed
Search for other papers by Sophie Gough in
Google Scholar
PubMed
Search for other papers by Medha Priyadarshini in
Google Scholar
PubMed
Search for other papers by Nupur Pandya in
Google Scholar
PubMed
Search for other papers by Chioma Nnyamah in
Google Scholar
PubMed
Search for other papers by Kai Xu in
Google Scholar
PubMed
Search for other papers by Barton Wicksteed in
Google Scholar
PubMed
Search for other papers by Sidharth Mishra in
Google Scholar
PubMed
Search for other papers by Shalini Jain in
Google Scholar
PubMed
Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
Search for other papers by Joseph L Zapater in
Google Scholar
PubMed
Search for other papers by Jose Cordoba-Chacon in
Google Scholar
PubMed
Search for other papers by Hariom Yadav in
Google Scholar
PubMed
Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
Search for other papers by Brian T Layden in
Google Scholar
PubMed
mouse models . Diabetes 64 3763 – 3771 . ( https://doi.org/10.2337/db15-0481 ) Fuller M Priyadarshini M Gibbons SM Angueira AR Brodsky M Hayes MG Kovatcheva-Datchary P Bäckhed F Gilbert JA Lowe WL , et al. 2015 The short
Search for other papers by E Meimaridou in
Google Scholar
PubMed
Search for other papers by M Goldsworthy in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by V Chortis in
Google Scholar
PubMed
Search for other papers by E Fragouli in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by P A Foster in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by W Arlt in
Google Scholar
PubMed
Search for other papers by R Cox in
Google Scholar
PubMed
Search for other papers by L A Metherell in
Google Scholar
PubMed
nicotinamide nucleotide transhydrogenase: a new quantitative trait locus accounting for glucose intolerance in C57BL/6J mice . Diabetes 55 2153 – 2156 . ( https://doi.org/10.2337/db06-0358 ) 16804088 10.2337/db06-0358 Guasti L Paul A Laufer E
Search for other papers by Sandra Pereira in
Google Scholar
PubMed
Search for other papers by Wen Qin Yu in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Search for other papers by María E Frigolet in
Google Scholar
PubMed
Search for other papers by Jacqueline L Beaudry in
Google Scholar
PubMed
Search for other papers by Yaniv Shpilberg in
Google Scholar
PubMed
Search for other papers by Edward Park in
Google Scholar
PubMed
Search for other papers by Cristina Dirlea in
Google Scholar
PubMed
Search for other papers by B L Grégoire Nyomba in
Google Scholar
PubMed
Search for other papers by Michael C Riddell in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Search for other papers by I George Fantus in
Google Scholar
PubMed
Search for other papers by Adria Giacca in
Google Scholar
PubMed
Introduction Obesity leads to type 2 diabetes mellitus (T2DM) because of insulin resistance, and insulin resistance of obesity is due to elevated circulating levels of free fatty acids (FFAs) and cytokines ( Boden 1997 , Lewis et al . 2002
Diabetes Institute, Ohio University, Athens, Ohio, USA
Department of Biological Sciences, Ohio University, Athens, Ohio, USA
Molecular & Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
Search for other papers by Ashley Patton in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Tyler Church in
Google Scholar
PubMed
Search for other papers by Caroline Wilson in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Jean Thuma in
Google Scholar
PubMed
Molecular & Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
Biomedical Engineering Program, Ohio University, Athens, Ohio, USA
Search for other papers by Douglas J Goetz in
Google Scholar
PubMed
Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA
The Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Darlene E Berryman in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
The Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Edward O List in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Frank Schwartz in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
Department of Biological Sciences, Ohio University, Athens, Ohio, USA
Molecular & Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
Biomedical Engineering Program, Ohio University, Athens, Ohio, USA
Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA
Search for other papers by Kelly D McCall in
Google Scholar
PubMed
). NAFLD, the hepatic manifestation of metabolic syndrome ( Yki-Jarvinen 2014 ), is linked to visceral obesity (a systemic pro-inflammatory state), dyslipidemia, insulin resistance and type 2 diabetes mellitus (T2DM) ( Zelber-Sagi et al . 2006
CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
Search for other papers by Ismael González-García in
Google Scholar
PubMed
CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
Search for other papers by Pablo B Martínez de Morentin in
Google Scholar
PubMed
CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
Search for other papers by Ánxela Estévez-Salguero in
Google Scholar
PubMed
CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
Search for other papers by Cristina Contreras in
Google Scholar
PubMed
CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
Search for other papers by Amparo Romero-Picó in
Google Scholar
PubMed
KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
Search for other papers by Johan Fernø in
Google Scholar
PubMed
CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
Search for other papers by Rubén Nogueiras in
Google Scholar
PubMed
CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
Search for other papers by Carlos Diéguez in
Google Scholar
PubMed
Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, Spain
FiDiPro Program, University of Turku, Turku, Finland
Search for other papers by Manuel Tena-Sempere in
Google Scholar
PubMed
CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
Search for other papers by Sulay Tovar in
Google Scholar
PubMed
CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
Search for other papers by Miguel López in
Google Scholar
PubMed
hormone-replacement therapy in menopausal patients led to reduced abdominal obesity, insulin resistance, new-onset diabetes, lipids, blood pressure, adhesion molecules and procoagulant factors in women without diabetes and reduced insulin resistance, as
Search for other papers by Lesley A Hill in
Google Scholar
PubMed
Search for other papers by Dimitra A Vassiliadi in
Google Scholar
PubMed
Search for other papers by Ioanna Dimopoulou in
Google Scholar
PubMed
Search for other papers by Anna J Anderson in
Google Scholar
PubMed
Search for other papers by Luke D Boyle in
Google Scholar
PubMed
Search for other papers by Alixe H M Kilgour in
Google Scholar
PubMed
Search for other papers by Roland H Stimson in
Google Scholar
PubMed
Search for other papers by Yoan Machado in
Google Scholar
PubMed
Search for other papers by Christopher M Overall in
Google Scholar
PubMed
Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by John G Lewis in
Google Scholar
PubMed
Search for other papers by Geoffrey L Hammond in
Google Scholar
PubMed
or release of CBG from individual tissues was detected across liver, where obese men with type 2 diabetes had net release of CBG as measured by cortisol-binding capacity (Supplementary Table 1). Notably, plasma CBG levels remained consistent when