Search Results
Search for other papers by K L Davies in
Google Scholar
PubMed
The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
Search for other papers by E J Camm in
Google Scholar
PubMed
Search for other papers by D J Smith in
Google Scholar
PubMed
Institute for Women’s Health, University College London, London, UK
Search for other papers by O R Vaughan in
Google Scholar
PubMed
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
Search for other papers by A J Forhead in
Google Scholar
PubMed
Search for other papers by A J Murray in
Google Scholar
PubMed
Search for other papers by A L Fowden in
Google Scholar
PubMed
skeletal muscle during late gestation. Its effects were muscle-specific and involved changes in mitochondrial biogenesis and respiratory function. Indeed, these prenatal cortisol-induced adaptations may explain, in part, the adult mitochondrial dysfunction
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Lisa L Koorneef in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Jan Kroon in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Eva M G Viho in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Lucas F Wahl in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Kim M L Heckmans in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Marloes M A R van Dorst in
Google Scholar
PubMed
Search for other papers by Menno Hoekstra in
Google Scholar
PubMed
Search for other papers by René Houtman in
Google Scholar
PubMed
Search for other papers by Hazel Hunt in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Onno C Meijer in
Google Scholar
PubMed
to suppression of the HPA-axis ( van den Heuvel et al. 2016 , Kroon et al. 2018 , Dalm et al. 2019 ). In our study, we evaluated CORT125281 only in a continuous and not in an acute treatment regimen, which may have allowed for adaptation of
Search for other papers by M J F Newson in
Google Scholar
PubMed
Search for other papers by G R Pope in
Google Scholar
PubMed
Search for other papers by E M Roberts in
Google Scholar
PubMed
Search for other papers by S J Lolait in
Google Scholar
PubMed
Search for other papers by A-M O'Carroll in
Google Scholar
PubMed
life and normally allow adaptation to cope with the disturbance. The major endocrine response to stressful events is activation of the hypothalamic–pituitary–adrenal (HPA) axis, and the key CNS site integrating neuroendocrine adjustments to stress is
Search for other papers by Sandra Pereira in
Google Scholar
PubMed
Search for other papers by Wen Qin Yu in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Search for other papers by María E Frigolet in
Google Scholar
PubMed
Search for other papers by Jacqueline L Beaudry in
Google Scholar
PubMed
Search for other papers by Yaniv Shpilberg in
Google Scholar
PubMed
Search for other papers by Edward Park in
Google Scholar
PubMed
Search for other papers by Cristina Dirlea in
Google Scholar
PubMed
Search for other papers by B L Grégoire Nyomba in
Google Scholar
PubMed
Search for other papers by Michael C Riddell in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Search for other papers by I George Fantus in
Google Scholar
PubMed
Search for other papers by Adria Giacca in
Google Scholar
PubMed
, following ∼7–14 days of adaptation to the animal facility. Briefly, indwelling catheters were inserted into the right internal jugular vein for infusion and the left carotid artery for blood sampling, as described previously ( Lam et al . 2002 , Park et
Search for other papers by Miroslav Adzic in
Google Scholar
PubMed
Search for other papers by Jelena Djordjevic in
Google Scholar
PubMed
Search for other papers by Ana Djordjevic in
Google Scholar
PubMed
Search for other papers by Ana Niciforovic in
Google Scholar
PubMed
Search for other papers by Constantinos Demonacos in
Google Scholar
PubMed
Search for other papers by Marija Radojcic in
Google Scholar
PubMed
Search for other papers by Marija Krstic-Demonacos in
Google Scholar
PubMed
Introduction Response to neuroendocrine stress begins with the activation of the hypothalamic–pituitary–adrenal (HPA) axis leading to the increase in stress hormones glucocorticoids (GCs). These hormones mediate adaptation to stress and also
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
Search for other papers by Eva M G Viho in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
Corcept Therapeutics, Menlo Park, CA, USA
Search for other papers by Jan Kroon in
Google Scholar
PubMed
Search for other papers by Richard A Feelders in
Google Scholar
PubMed
Search for other papers by René Houtman in
Google Scholar
PubMed
Search for other papers by Elisabeth S R van den Dungen in
Google Scholar
PubMed
Search for other papers by Alberto M Pereira in
Google Scholar
PubMed
Search for other papers by Hazel J Hunt in
Google Scholar
PubMed
Search for other papers by Leo J Hofland in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
Corcept Therapeutics, Menlo Park, CA, USA
Search for other papers by Onno C Meijer in
Google Scholar
PubMed
Holsboer F 2005 Stress and the brain: from adaptation to disease . Nature Reviews. Neuroscience 6 463 – 475 . ( https://doi.org/10.1038/nrn1683 ) Deng Q Riquelme D Trinh L Low MJ Tomić M Stojilkovic S Aguilera G 2015 Rapid glucocorticoid
Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
Search for other papers by Shun-Neng Hsu in
Google Scholar
PubMed
Search for other papers by Louise A Stephen in
Google Scholar
PubMed
Search for other papers by Scott Dillon in
Google Scholar
PubMed
Search for other papers by Elspeth Milne in
Google Scholar
PubMed
Search for other papers by Behzad Javaheri in
Google Scholar
PubMed
Search for other papers by Andrew A Pitsillides in
Google Scholar
PubMed
Search for other papers by Amanda Novak in
Google Scholar
PubMed
Search for other papers by Jose Luis Millán in
Google Scholar
PubMed
Search for other papers by Vicky E MacRae in
Google Scholar
PubMed
Search for other papers by Katherine A Staines in
Google Scholar
PubMed
Search for other papers by Colin Farquharson in
Google Scholar
PubMed
-1755.1999.07308.x ) 10.1046/j.1523-1755.1999.07308.x Deng S Li J Du Z Wu Z Yang J Cai H Wu G Xu F Huang Y Wang S 2022 Rice acid phosphatase 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis . Plant, Cell and
VCA Colonial Animal Hospital, Ithaca, New York, USA
Search for other papers by Michael Merkhassine in
Google Scholar
PubMed
Weill Cornell College of Medicine, New York, New York, USA
Search for other papers by Reilly W Coch in
Google Scholar
PubMed
Search for other papers by Carol E Frederick in
Google Scholar
PubMed
Search for other papers by Lucinda L Bennett in
Google Scholar
PubMed
Fate Therapeutics, San Diego, California, USA
Search for other papers by Seth A Peng in
Google Scholar
PubMed
Search for other papers by Benjamin Morse in
Google Scholar
PubMed
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
Search for other papers by Bethany P Cummings in
Google Scholar
PubMed
Search for other papers by John P Loftus in
Google Scholar
PubMed
the apparent physiological adaptation for renal AA loss poses a challenge to interpretation. However, this paradoxical scenario might stem from the maladaptive consequences of exposure to supraphysiological levels of glucagon. Notably, glucagon has
University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
Search for other papers by Renata Risi in
Google Scholar
PubMed
Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China
Centro de Investigacion Principe Felipe, Valencia, Spain
Search for other papers by Antonio Vidal-Puig in
Google Scholar
PubMed
Search for other papers by Guillaume Bidault in
Google Scholar
PubMed
-resistant individuals might be an adaptation to potentiate insulin secretion and compensate for increased insulin needed to compensate for IR ( McGarry 2002 , Prentki et al. 2002 , Nolan et al. 2006 ). Interestingly, the insulinotropic action of FAs may be linked
Search for other papers by Rui Gao in
Google Scholar
PubMed
Department of Physiology, Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Gothenburg, Göteborg, Sweden
Search for other papers by Samuel Acreman in
Google Scholar
PubMed
Search for other papers by Jinfang Ma in
Google Scholar
PubMed
Search for other papers by Fernando Abdulkader in
Google Scholar
PubMed
Search for other papers by Anna Wendt in
Google Scholar
PubMed
CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
Search for other papers by Quan Zhang in
Google Scholar
PubMed
) work in concert to stimulate or inhibit glucose counter-regulation ( Sherwin 2008 ). Previous hypoglycaemia impairs VMH glucose sensing by multiple adaptations, including reduced VMH K ATP -channel activity ( McCrimmon et al. 2005 ), increased