Search Results

You are looking at 41 - 50 of 58 items for :

  • Refine by access: Open Access content only x
Clear All
K L Davies Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Search for other papers by K L Davies in
Google Scholar
PubMed
Close
,
E J Camm Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia

Search for other papers by E J Camm in
Google Scholar
PubMed
Close
,
D J Smith Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Search for other papers by D J Smith in
Google Scholar
PubMed
Close
,
O R Vaughan Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
Institute for Women’s Health, University College London, London, UK

Search for other papers by O R Vaughan in
Google Scholar
PubMed
Close
,
A J Forhead Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK

Search for other papers by A J Forhead in
Google Scholar
PubMed
Close
,
A J Murray Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Search for other papers by A J Murray in
Google Scholar
PubMed
Close
, and
A L Fowden Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Search for other papers by A L Fowden in
Google Scholar
PubMed
Close

skeletal muscle during late gestation. Its effects were muscle-specific and involved changes in mitochondrial biogenesis and respiratory function. Indeed, these prenatal cortisol-induced adaptations may explain, in part, the adult mitochondrial dysfunction

Open access
Lisa L Koorneef Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Lisa L Koorneef in
Google Scholar
PubMed
Close
,
Jan Kroon Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Jan Kroon in
Google Scholar
PubMed
Close
,
Eva M G Viho Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Eva M G Viho in
Google Scholar
PubMed
Close
,
Lucas F Wahl Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Lucas F Wahl in
Google Scholar
PubMed
Close
,
Kim M L Heckmans Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Kim M L Heckmans in
Google Scholar
PubMed
Close
,
Marloes M A R van Dorst Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Marloes M A R van Dorst in
Google Scholar
PubMed
Close
,
Menno Hoekstra Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands

Search for other papers by Menno Hoekstra in
Google Scholar
PubMed
Close
,
René Houtman Pamgene International, Den Bosch, The Netherlands

Search for other papers by René Houtman in
Google Scholar
PubMed
Close
,
Hazel Hunt Corcept Therapeutics, Menlo Park, California, USA

Search for other papers by Hazel Hunt in
Google Scholar
PubMed
Close
, and
Onno C Meijer Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Onno C Meijer in
Google Scholar
PubMed
Close

to suppression of the HPA-axis ( van den Heuvel et al. 2016 , Kroon et al. 2018 , Dalm et al. 2019 ). In our study, we evaluated CORT125281 only in a continuous and not in an acute treatment regimen, which may have allowed for adaptation of

Open access
M J F Newson Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK

Search for other papers by M J F Newson in
Google Scholar
PubMed
Close
,
G R Pope Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK

Search for other papers by G R Pope in
Google Scholar
PubMed
Close
,
E M Roberts Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK

Search for other papers by E M Roberts in
Google Scholar
PubMed
Close
,
S J Lolait Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK

Search for other papers by S J Lolait in
Google Scholar
PubMed
Close
, and
A-M O'Carroll Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (LINE), School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK

Search for other papers by A-M O'Carroll in
Google Scholar
PubMed
Close

life and normally allow adaptation to cope with the disturbance. The major endocrine response to stressful events is activation of the hypothalamic–pituitary–adrenal (HPA) axis, and the key CNS site integrating neuroendocrine adjustments to stress is

Open access
Sandra Pereira Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by Sandra Pereira in
Google Scholar
PubMed
Close
,
Wen Qin Yu Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by Wen Qin Yu in
Google Scholar
PubMed
Close
,
María E Frigolet Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by María E Frigolet in
Google Scholar
PubMed
Close
,
Jacqueline L Beaudry Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by Jacqueline L Beaudry in
Google Scholar
PubMed
Close
,
Yaniv Shpilberg Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by Yaniv Shpilberg in
Google Scholar
PubMed
Close
,
Edward Park Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by Edward Park in
Google Scholar
PubMed
Close
,
Cristina Dirlea Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by Cristina Dirlea in
Google Scholar
PubMed
Close
,
B L Grégoire Nyomba Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by B L Grégoire Nyomba in
Google Scholar
PubMed
Close
,
Michael C Riddell Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by Michael C Riddell in
Google Scholar
PubMed
Close
,
I George Fantus Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by I George Fantus in
Google Scholar
PubMed
Close
, and
Adria Giacca Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8

Search for other papers by Adria Giacca in
Google Scholar
PubMed
Close

, following ∼7–14 days of adaptation to the animal facility. Briefly, indwelling catheters were inserted into the right internal jugular vein for infusion and the left carotid artery for blood sampling, as described previously ( Lam et al . 2002 , Park et

Open access
Miroslav Adzic
Search for other papers by Miroslav Adzic in
Google Scholar
PubMed
Close
,
Jelena Djordjevic
Search for other papers by Jelena Djordjevic in
Google Scholar
PubMed
Close
,
Ana Djordjevic
Search for other papers by Ana Djordjevic in
Google Scholar
PubMed
Close
,
Ana Niciforovic
Search for other papers by Ana Niciforovic in
Google Scholar
PubMed
Close
,
Constantinos Demonacos Laboratory of Molecular Biology and Endocrinology, School of Pharmacy, Faculty of Life Sciences, VINCA Institute of Nuclear Sciences, PO Box-522-MBE090, 11001 Belgrade, Serbia

Search for other papers by Constantinos Demonacos in
Google Scholar
PubMed
Close
,
Marija Radojcic
Search for other papers by Marija Radojcic in
Google Scholar
PubMed
Close
, and
Marija Krstic-Demonacos Laboratory of Molecular Biology and Endocrinology, School of Pharmacy, Faculty of Life Sciences, VINCA Institute of Nuclear Sciences, PO Box-522-MBE090, 11001 Belgrade, Serbia

Search for other papers by Marija Krstic-Demonacos in
Google Scholar
PubMed
Close

Introduction Response to neuroendocrine stress begins with the activation of the hypothalamic–pituitary–adrenal (HPA) axis leading to the increase in stress hormones glucocorticoids (GCs). These hormones mediate adaptation to stress and also

Open access
Eva M G Viho Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands

Search for other papers by Eva M G Viho in
Google Scholar
PubMed
Close
,
Jan Kroon Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
Corcept Therapeutics, Menlo Park, CA, USA

Search for other papers by Jan Kroon in
Google Scholar
PubMed
Close
,
Richard A Feelders Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands

Search for other papers by Richard A Feelders in
Google Scholar
PubMed
Close
,
René Houtman Precision Medicine Lab, Oss, the Netherlands

Search for other papers by René Houtman in
Google Scholar
PubMed
Close
,
Elisabeth S R van den Dungen Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands

Search for other papers by Elisabeth S R van den Dungen in
Google Scholar
PubMed
Close
,
Alberto M Pereira Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Amsterdam, the Netherlands

Search for other papers by Alberto M Pereira in
Google Scholar
PubMed
Close
,
Hazel J Hunt Corcept Therapeutics, Menlo Park, CA, USA

Search for other papers by Hazel J Hunt in
Google Scholar
PubMed
Close
,
Leo J Hofland Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands

Search for other papers by Leo J Hofland in
Google Scholar
PubMed
Close
, and
Onno C Meijer Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
Corcept Therapeutics, Menlo Park, CA, USA

Search for other papers by Onno C Meijer in
Google Scholar
PubMed
Close

Holsboer F 2005 Stress and the brain: from adaptation to disease . Nature Reviews. Neuroscience 6 463 – 475 . ( https://doi.org/10.1038/nrn1683 ) Deng Q Riquelme D Trinh L Low MJ Tomić M Stojilkovic S Aguilera G 2015 Rapid glucocorticoid

Open access
Shun-Neng Hsu The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

Search for other papers by Shun-Neng Hsu in
Google Scholar
PubMed
Close
,
Louise A Stephen The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Louise A Stephen in
Google Scholar
PubMed
Close
,
Scott Dillon The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Scott Dillon in
Google Scholar
PubMed
Close
,
Elspeth Milne The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Elspeth Milne in
Google Scholar
PubMed
Close
,
Behzad Javaheri Comparative Biomedical Sciences, The Royal Veterinary College, London, UK

Search for other papers by Behzad Javaheri in
Google Scholar
PubMed
Close
,
Andrew A Pitsillides Comparative Biomedical Sciences, The Royal Veterinary College, London, UK

Search for other papers by Andrew A Pitsillides in
Google Scholar
PubMed
Close
,
Amanda Novak The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Amanda Novak in
Google Scholar
PubMed
Close
,
Jose Luis Millán Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA

Search for other papers by Jose Luis Millán in
Google Scholar
PubMed
Close
,
Vicky E MacRae The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Vicky E MacRae in
Google Scholar
PubMed
Close
,
Katherine A Staines Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK

Search for other papers by Katherine A Staines in
Google Scholar
PubMed
Close
, and
Colin Farquharson The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Colin Farquharson in
Google Scholar
PubMed
Close

-1755.1999.07308.x ) 10.1046/j.1523-1755.1999.07308.x Deng S Li J Du Z Wu Z Yang J Cai H Wu G Xu F Huang Y Wang S 2022 Rice acid phosphatase 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis . Plant, Cell and

Open access
Michael Merkhassine Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
VCA Colonial Animal Hospital, Ithaca, New York, USA

Search for other papers by Michael Merkhassine in
Google Scholar
PubMed
Close
,
Reilly W Coch Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
Weill Cornell College of Medicine, New York, New York, USA

Search for other papers by Reilly W Coch in
Google Scholar
PubMed
Close
,
Carol E Frederick Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA

Search for other papers by Carol E Frederick in
Google Scholar
PubMed
Close
,
Lucinda L Bennett Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA

Search for other papers by Lucinda L Bennett in
Google Scholar
PubMed
Close
,
Seth A Peng Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
Fate Therapeutics, San Diego, California, USA

Search for other papers by Seth A Peng in
Google Scholar
PubMed
Close
,
Benjamin Morse Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA

Search for other papers by Benjamin Morse in
Google Scholar
PubMed
Close
,
Bethany P Cummings Center for Alimentary and Metabolic Science, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, USA
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA

Search for other papers by Bethany P Cummings in
Google Scholar
PubMed
Close
, and
John P Loftus Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA

Search for other papers by John P Loftus in
Google Scholar
PubMed
Close

the apparent physiological adaptation for renal AA loss poses a challenge to interpretation. However, this paradoxical scenario might stem from the maladaptive consequences of exposure to supraphysiological levels of glucagon. Notably, glucagon has

Open access
Renata Risi Department of Experimental Medicine, Sapienza University of Rome, Sapienza University of Rome, Rome, Italy
University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK

Search for other papers by Renata Risi in
Google Scholar
PubMed
Close
,
Antonio Vidal-Puig University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China
Centro de Investigacion Principe Felipe, Valencia, Spain

Search for other papers by Antonio Vidal-Puig in
Google Scholar
PubMed
Close
, and
Guillaume Bidault University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK

Search for other papers by Guillaume Bidault in
Google Scholar
PubMed
Close

-resistant individuals might be an adaptation to potentiate insulin secretion and compensate for increased insulin needed to compensate for IR ( McGarry 2002 , Prentki et al. 2002 , Nolan et al. 2006 ). Interestingly, the insulinotropic action of FAs may be linked

Open access
Rui Gao Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Rui Gao in
Google Scholar
PubMed
Close
,
Samuel Acreman Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
Department of Physiology, Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Gothenburg, Göteborg, Sweden

Search for other papers by Samuel Acreman in
Google Scholar
PubMed
Close
,
Jinfang Ma Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Jinfang Ma in
Google Scholar
PubMed
Close
,
Fernando Abdulkader Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil

Search for other papers by Fernando Abdulkader in
Google Scholar
PubMed
Close
,
Anna Wendt Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden

Search for other papers by Anna Wendt in
Google Scholar
PubMed
Close
, and
Quan Zhang Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal

Search for other papers by Quan Zhang in
Google Scholar
PubMed
Close

) work in concert to stimulate or inhibit glucose counter-regulation ( Sherwin 2008 ). Previous hypoglycaemia impairs VMH glucose sensing by multiple adaptations, including reduced VMH K ATP -channel activity ( McCrimmon et al. 2005 ), increased

Open access