Search Results
Search for other papers by Shiao Y Chan in
Google Scholar
PubMed
Search for other papers by Laura A Hancox in
Google Scholar
PubMed
Search for other papers by Azucena Martín-Santos in
Google Scholar
PubMed
Search for other papers by Laurence S Loubière in
Google Scholar
PubMed
Search for other papers by Merlin N M Walter in
Google Scholar
PubMed
Search for other papers by Ana-Maria González in
Google Scholar
PubMed
Search for other papers by Phillip M Cox in
Google Scholar
PubMed
Search for other papers by Ann Logan in
Google Scholar
PubMed
Search for other papers by Christopher J McCabe in
Google Scholar
PubMed
Search for other papers by Jayne A Franklyn in
Google Scholar
PubMed
School of Clinical and Experimental Medicine, Department of Pathology, Fetal Medicine Centre, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
Search for other papers by Mark D Kilby in
Google Scholar
PubMed
Introduction Intrauterine growth restriction (IUGR) describes the failure of a fetus to attain its genetically determined growth potential, with the most common underlying etiology being uteroplacental failure associated with abnormal placental
Search for other papers by Valentina Pampanini in
Google Scholar
PubMed
Search for other papers by Daniela Germani in
Google Scholar
PubMed
Search for other papers by Antonella Puglianiello in
Google Scholar
PubMed
Search for other papers by Jan-Bernd Stukenborg in
Google Scholar
PubMed
Search for other papers by Ahmed Reda in
Google Scholar
PubMed
Search for other papers by Iuliia Savchuk in
Google Scholar
PubMed
Search for other papers by Kristín Rós Kjartansdóttir in
Google Scholar
PubMed
Dipartimento Pediatrico Universitario Ospedaliero ‘Bambino Gesù’ Children’s Hospital – Tor Vergata University, Rome, Italy
Search for other papers by Stefano Cianfarani in
Google Scholar
PubMed
Search for other papers by Olle Söder in
Google Scholar
PubMed
Introduction Adverse conditions during fetal life, such as low nutrient and/or oxygen supply from the placenta, can lead to intrauterine growth restriction (IUGR) and low birth weight. Besides affecting body growth, a suboptimal intrauterine
Search for other papers by Antonia Hufnagel in
Google Scholar
PubMed
Search for other papers by Laura Dearden in
Google Scholar
PubMed
Search for other papers by Denise S Fernandez-Twinn in
Google Scholar
PubMed
Search for other papers by Susan E Ozanne in
Google Scholar
PubMed
effects of hyperinsulinaemia on maternal haemodynamic adaptations could explain the increased risk of stillbirth in obese and diabetic pregnancies ( Poston et al. 2016 ). They could also explain the cases of intrauterine growth restriction (IUGR) in
Search for other papers by Stuart A Lanham in
Google Scholar
PubMed
Search for other papers by Dominique Blache in
Google Scholar
PubMed
Search for other papers by Richard O C Oreffo in
Google Scholar
PubMed
Search for other papers by Abigail L Fowden in
Google Scholar
PubMed
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
Search for other papers by Alison J Forhead in
Google Scholar
PubMed
positive and negative correlations observed between plasma insulin and concentrations of IGFI and IGFII, respectively ( Gluckman et al. 1987 ). Similarly, in a clinical case of transient neonatal diabetes mellitus where the infant was born with IUGR and
Search for other papers by Seokwon Jo in
Google Scholar
PubMed
Search for other papers by Emilyn U Alejandro in
Google Scholar
PubMed
insulin processing . Nature Communications 8 16014 . ( https://doi.org/10.1038/ncomms16014 ) Boehmer BH Limesand SW & Rozance PJ 2017 The impact of IUGR on pancreatic islet development and beta-cell function . Journal of Endocrinology 235 R63