Search Results
Search for other papers by Thomas Funck-Brentano in
Google Scholar
PubMed
Search for other papers by Karin H Nilsson in
Google Scholar
PubMed
Search for other papers by Robert Brommage in
Google Scholar
PubMed
Search for other papers by Petra Henning in
Google Scholar
PubMed
Search for other papers by Ulf H Lerner in
Google Scholar
PubMed
Search for other papers by Antti Koskela in
Google Scholar
PubMed
Search for other papers by Juha Tuukkanen in
Google Scholar
PubMed
Search for other papers by Martine Cohen-Solal in
Google Scholar
PubMed
Search for other papers by Sofia Movérare-Skrtic in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
(Instron Corp., Norwood, MA, USA). Based on the recorded load deformation curves, the biomechanical parameters were calculated from raw files produced by Bluehill 2 software, version 2.6 (Instron) with custom-made Excel macros. Bone histomorphometry
Search for other papers by David E Maridas in
Google Scholar
PubMed
Search for other papers by Victoria E DeMambro in
Google Scholar
PubMed
Search for other papers by Phuong T Le in
Google Scholar
PubMed
Search for other papers by Kenichi Nagano in
Google Scholar
PubMed
Search for other papers by Roland Baron in
Google Scholar
PubMed
Search for other papers by Subburaman Mohan in
Google Scholar
PubMed
Search for other papers by Clifford J Rosen in
Google Scholar
PubMed
. Histomorphometry Calcein and demeclocycline were injected intraperitoneally at 20mg/kg of body weight at respectively 9 days and 2 days prior to killing the mice at 16 weeks of age. Tibiae were fixed for 48 h in 10% buffered formalin and stored in 70% ethanol
Search for other papers by Vikte Lionikaite in
Google Scholar
PubMed
Search for other papers by Karin L Gustafsson in
Google Scholar
PubMed
Search for other papers by Anna Westerlund in
Google Scholar
PubMed
Search for other papers by Sara H Windahl in
Google Scholar
PubMed
Search for other papers by Antti Koskela in
Google Scholar
PubMed
Search for other papers by Juha Tuukkanen in
Google Scholar
PubMed
Search for other papers by Helena Johansson in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Search for other papers by H Herschel Conaway in
Google Scholar
PubMed
Search for other papers by Petra Henning in
Google Scholar
PubMed
Search for other papers by Ulf H Lerner in
Google Scholar
PubMed
reconstruction following established guidelines ( Bouxsein et al. 2010 ). Histomorphometry and measurement of mechanical strength For the measure of dynamic bone parameters, mice were injected (i.p.) with 100 µL of calcein (50 mg/kg) 8 and 1 day before
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
Search for other papers by Claire L Wood in
Google Scholar
PubMed
Search for other papers by Rob van ‘t Hof in
Google Scholar
PubMed
Search for other papers by Scott Dillon in
Google Scholar
PubMed
Search for other papers by Volker Straub in
Google Scholar
PubMed
Search for other papers by Sze C Wong in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Colin Farquharson in
Google Scholar
PubMed
, West Sussex, UK). A 100 N loading cell was used with the span fixed at 10 mm and the cross-head was lowered at 1 mm/min to determine the load to failure and maximum stiffness and deflection of tibiae ( Huesa et al. 2011 ). Bone histomorphometry
Search for other papers by J Jeyabalan in
Google Scholar
PubMed
Search for other papers by M Shah in
Google Scholar
PubMed
Department of Veterinary Basic Sciences, INSERM, CNRS, Université Paris Decartes, INSERM, Department of Endocrinology, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
Department of Veterinary Basic Sciences, INSERM, CNRS, Université Paris Decartes, INSERM, Department of Endocrinology, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
Search for other papers by B Viollet in
Google Scholar
PubMed
Search for other papers by J P Roux in
Google Scholar
PubMed
Search for other papers by P Chavassieux in
Google Scholar
PubMed
Search for other papers by M Korbonits in
Google Scholar
PubMed
Search for other papers by C Chenu in
Google Scholar
PubMed
tibiae were harvested from these mice for micro-CT (studies 1, 2 and 3) and bone histomorphometric analyses (study 1) respectively. Femora were collected for western blot and RT-PCR analyses. Histomorphometry analysis of tibia Right tibia from sham
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Search for other papers by Petra Henning in
Google Scholar
PubMed
Search for other papers by Karin H Nilsson in
Google Scholar
PubMed
Search for other papers by Jianyao Wu in
Google Scholar
PubMed
Search for other papers by Karin L Gustafsson in
Google Scholar
PubMed
Search for other papers by Klara Sjögren in
Google Scholar
PubMed
Search for other papers by Anna Törnqvist in
Google Scholar
PubMed
Search for other papers by Antti Koskela in
Google Scholar
PubMed
Search for other papers by Fu-Ping Zhang in
Google Scholar
PubMed
Search for other papers by Marie K Lagerquist in
Google Scholar
PubMed
Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
Search for other papers by Matti Poutanen in
Google Scholar
PubMed
Search for other papers by Juha Tuukkanen in
Google Scholar
PubMed
Search for other papers by Ulf H Lerner in
Google Scholar
PubMed
Search for other papers by Sofia Movérare-Skrtic in
Google Scholar
PubMed
the lower end of the pedicles, and extending a further longitudinal distance of 328 µm in the caudal direction. Static and dynamic bone histomorphometry Femurs of the 51-week-old female mice were analyzed by PharmaTest Services, Ltd. as
Search for other papers by Louise Grahnemo in
Google Scholar
PubMed
Departments of Rheumatology and Inflammation Research, Internal Medicine and Clinical Nutrition, Laboratory of Tumor Immunology and Biology, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, Gothenburg 405 30, Sweden
Search for other papers by Caroline Jochems in
Google Scholar
PubMed
Search for other papers by Annica Andersson in
Google Scholar
PubMed
Departments of Rheumatology and Inflammation Research, Internal Medicine and Clinical Nutrition, Laboratory of Tumor Immunology and Biology, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, Gothenburg 405 30, Sweden
Search for other papers by Cecilia Engdahl in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Search for other papers by Ulrika Islander in
Google Scholar
PubMed
Search for other papers by Hans Carlsten in
Google Scholar
PubMed
is the use of serum markers as a measure of bone turnover, instead of histomorphometry. Another limitation is the lack of data on trabecular bone strength, as the three-point bending test used in this study mainly reflects cortical strength. In this
Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
Search for other papers by Shun-Neng Hsu in
Google Scholar
PubMed
Search for other papers by Louise A Stephen in
Google Scholar
PubMed
Search for other papers by Scott Dillon in
Google Scholar
PubMed
Search for other papers by Elspeth Milne in
Google Scholar
PubMed
Search for other papers by Behzad Javaheri in
Google Scholar
PubMed
Search for other papers by Andrew A Pitsillides in
Google Scholar
PubMed
Search for other papers by Amanda Novak in
Google Scholar
PubMed
Search for other papers by Jose Luis Millán in
Google Scholar
PubMed
Search for other papers by Vicky E MacRae in
Google Scholar
PubMed
Search for other papers by Katherine A Staines in
Google Scholar
PubMed
Search for other papers by Colin Farquharson in
Google Scholar
PubMed
.4) for 14 days at 4°C and processed in paraffin wax. Sections were stained using Goldner’s Trichrome and reacted for tartrate-resistant acid phosphatase. Bone histomorphometry was quantified using the BioQuant Osteo software (BIOQUANT Image Analysis
Search for other papers by Bernard Freudenthal in
Google Scholar
PubMed
Search for other papers by John Logan in
Google Scholar
PubMed
Search for other papers by Sanger Institute Mouse Pipelines in
Google Scholar
PubMed
Search for other papers by Peter I Croucher in
Google Scholar
PubMed
Search for other papers by Graham R Williams in
Google Scholar
PubMed
Search for other papers by J H Duncan Bassett in
Google Scholar
PubMed
evidence of variations in skeletal cellular function. Histomorphometry is performed by a recently innovated high-throughput process that involves computer-automated signal detection for the particular cell type-specific stains. Data are accrued by automated
Search for other papers by Andrea Lovdel in
Google Scholar
PubMed
Search for other papers by Karla J Suchacki in
Google Scholar
PubMed
Search for other papers by Fiona Roberts in
Google Scholar
PubMed
Search for other papers by Richard J Sulston in
Google Scholar
PubMed
Search for other papers by Robert J Wallace in
Google Scholar
PubMed
Search for other papers by Benjamin J Thomas in
Google Scholar
PubMed
Search for other papers by Rachel M B Bell in
Google Scholar
PubMed
Search for other papers by Iris Pruñonosa Cervera in
Google Scholar
PubMed
Search for other papers by Gavin J Macpherson in
Google Scholar
PubMed
Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
Search for other papers by Nicholas M Morton in
Google Scholar
PubMed
Search for other papers by Natalie Z M Homer in
Google Scholar
PubMed
Search for other papers by Karen E Chapman in
Google Scholar
PubMed
Search for other papers by William P Cawthorn in
Google Scholar
PubMed
Histology and histomorphometry Fixed murine WAT and decalcified bones (14% EDTA for 14 days) were paraffin-embedded, sectioned, H&E stained, and analysed for adipocyte size distribution as described previously ( Suchacki et al. 2023 ). X