Search Results
Search for other papers by Hyo Youl Moon in
Google Scholar
PubMed
Search for other papers by Parkyong Song in
Google Scholar
PubMed
Search for other papers by Cheol Soo Choi in
Google Scholar
PubMed
Search for other papers by Sung Ho Ryu in
Google Scholar
PubMed
Search for other papers by Pann-Ghill Suh in
Google Scholar
PubMed
2008 ). Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic component of metabolic syndrome, which is highly associated with obesity and insulin resistance ( Postic & Girard 2008 ). A representative phenomenon of NAFLD is hepatic
Search for other papers by Nikolaos Nikolaou in
Google Scholar
PubMed
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
Search for other papers by Anastasia Arvaniti in
Google Scholar
PubMed
Search for other papers by Nathan Appanna in
Google Scholar
PubMed
Search for other papers by Anna Sharp in
Google Scholar
PubMed
Search for other papers by Beverly A Hughes in
Google Scholar
PubMed
Search for other papers by Dena Digweed in
Google Scholar
PubMed
Search for other papers by Martin J Whitaker in
Google Scholar
PubMed
Search for other papers by Richard Ross in
Google Scholar
PubMed
NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
Search for other papers by Wiebke Arlt in
Google Scholar
PubMed
Search for other papers by Trevor M Penning in
Google Scholar
PubMed
Search for other papers by Karen Morris in
Google Scholar
PubMed
Search for other papers by Sherly George in
Google Scholar
PubMed
Search for other papers by Brian G Keevil in
Google Scholar
PubMed
Search for other papers by Leanne Hodson in
Google Scholar
PubMed
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
Search for other papers by Laura L Gathercole in
Google Scholar
PubMed
Search for other papers by Jeremy W Tomlinson in
Google Scholar
PubMed
Introduction Glucocorticoids (GCs) are steroid hormones that are released in response to stress and play a crucial role in inflammation and in carbohydrate, lipid and protein metabolism. Within key metabolic target tissues, notably the liver
Search for other papers by Sandra Pereira in
Google Scholar
PubMed
Search for other papers by Wen Qin Yu in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Search for other papers by María E Frigolet in
Google Scholar
PubMed
Search for other papers by Jacqueline L Beaudry in
Google Scholar
PubMed
Search for other papers by Yaniv Shpilberg in
Google Scholar
PubMed
Search for other papers by Edward Park in
Google Scholar
PubMed
Search for other papers by Cristina Dirlea in
Google Scholar
PubMed
Search for other papers by B L Grégoire Nyomba in
Google Scholar
PubMed
Search for other papers by Michael C Riddell in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Search for other papers by I George Fantus in
Google Scholar
PubMed
Search for other papers by Adria Giacca in
Google Scholar
PubMed
animals. At the end of the clamp, rats were anesthetized, the liver was freeze-clamped with pre-cooled aluminum tongs, and the soleus muscle was collected. Tissues were stored at −80 °C. The tissue determinations have a lower n than the glucose kinetics
Search for other papers by Joachim M Weitzel in
Google Scholar
PubMed
Search for other papers by Torsten Viergutz in
Google Scholar
PubMed
Search for other papers by Dirk Albrecht in
Google Scholar
PubMed
Search for other papers by Rupert Bruckmaier in
Google Scholar
PubMed
Search for other papers by Marion Schmicke in
Google Scholar
PubMed
Search for other papers by Armin Tuchscherer in
Google Scholar
PubMed
Search for other papers by Franziska Koch in
Google Scholar
PubMed
Search for other papers by Björn Kuhla in
Google Scholar
PubMed
likely that the TH system and TH-mediated signaling play a pivotal role in the control of substrate utilization and thus body temperature of heat-stressed cows. In order to distinguish between heat and energy intake-related effects, we analyzed the liver
Search for other papers by S Khan in
Google Scholar
PubMed
Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
Search for other papers by D E W Livingstone in
Google Scholar
PubMed
Search for other papers by A Zielinska in
Google Scholar
PubMed
Search for other papers by C L Doig in
Google Scholar
PubMed
Search for other papers by D F Cobice in
Google Scholar
PubMed
Search for other papers by C L Esteves in
Google Scholar
PubMed
Search for other papers by J T Y Man in
Google Scholar
PubMed
Search for other papers by N Z M Homer in
Google Scholar
PubMed
Search for other papers by J R Seckl in
Google Scholar
PubMed
Search for other papers by C L MacKay in
Google Scholar
PubMed
Search for other papers by S P Webster in
Google Scholar
PubMed
Search for other papers by G G Lavery in
Google Scholar
PubMed
Search for other papers by K E Chapman in
Google Scholar
PubMed
Clinical & Translational Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
Search for other papers by B R Walker in
Google Scholar
PubMed
Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
Search for other papers by R Andrew in
Google Scholar
PubMed
liver by arterio-venous sampling of production rates of d3F regenerated by 11βHSD1 ( Andrew et al. 2005 , Basu et al. 2006 , 2009 ) supports the view that, in humans, the majority of circulating cortisol arising from 11βHSD1-mediated glucocorticoid
Search for other papers by Taira Wada in
Google Scholar
PubMed
Search for other papers by Yukiko Yamamoto in
Google Scholar
PubMed
Search for other papers by Yukiko Takasugi in
Google Scholar
PubMed
Search for other papers by Hirotake Ishii in
Google Scholar
PubMed
Search for other papers by Taketo Uchiyama in
Google Scholar
PubMed
Search for other papers by Kaori Saitoh in
Google Scholar
PubMed
Search for other papers by Masahiro Suzuki in
Google Scholar
PubMed
Tokyo Adachi Hospital, Adachi, Tokyo, Japan
Search for other papers by Makoto Uchiyama in
Google Scholar
PubMed
Search for other papers by Hikari Yoshitane in
Google Scholar
PubMed
Search for other papers by Yoshitaka Fukada in
Google Scholar
PubMed
Search for other papers by Shigeki Shimba in
Google Scholar
PubMed
, Shimba et al. 2011 ). Conversely, obesity simultaneously decreases the expression of clock genes in each tissue; for example, a high-fat diet can alter the rhythmic expression of clock genes in the liver and the adipose tissue and affect behavioral
Search for other papers by Sebastian R Vanin in
Google Scholar
PubMed
Search for other papers by Kendrick Lee in
Google Scholar
PubMed
Search for other papers by Mina Nashed in
Google Scholar
PubMed
Search for other papers by Brennan Tse in
Google Scholar
PubMed
Search for other papers by Mohammed Sarikahya in
Google Scholar
PubMed
Search for other papers by Sukham Brar in
Google Scholar
PubMed
Search for other papers by Gregg Tomy in
Google Scholar
PubMed
Search for other papers by Amica-Mariae Lucas in
Google Scholar
PubMed
Search for other papers by Thane Tomy in
Google Scholar
PubMed
Search for other papers by Steven R Laviolette in
Google Scholar
PubMed
Search for other papers by Edith J Arany in
Google Scholar
PubMed
The Lawson Health Research Institute and the Children's Health Research Institute, London, Ontario, Canada
Search for other papers by Daniel B Hardy in
Google Scholar
PubMed
effects on glucose regulation ( Matias & Di Marzo 2007 ). Indeed, the ECS in the pancreas is involved in the development of the endocrine islets, as well as glucose-stimulated insulin secretion ( Malenczyk et al. 2013 , 2015 ). Moreover, in the liver
Search for other papers by Alyce M Martin in
Google Scholar
PubMed
Search for other papers by Emily W Sun in
Google Scholar
PubMed
Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
Search for other papers by Damien J Keating in
Google Scholar
PubMed
pathogenesis of human metabolic disorders. Gut hormone regulation of metabolism The regulation of whole-body metabolism involves the integrated activity of multiple metabolically active tissues, including the GI tract, pancreas, adipose tissue, liver
Search for other papers by Tina Seidu in
Google Scholar
PubMed
Search for other papers by Patrick McWhorter in
Google Scholar
PubMed
Search for other papers by Jessie Myer in
Google Scholar
PubMed
Search for other papers by Rabita Alamgir in
Google Scholar
PubMed
Search for other papers by Nicole Eregha in
Google Scholar
PubMed
Search for other papers by Dilip Bogle in
Google Scholar
PubMed
Search for other papers by Taylor Lofton in
Google Scholar
PubMed
Search for other papers by Carolyn Ecelbarger in
Google Scholar
PubMed
Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
Search for other papers by Stanley Andrisse in
Google Scholar
PubMed
triglycerides and free fatty acids (FFA), thus driving lipid accumulation mainly in the liver ( Samuel & Shulman 2016 ). Previous work has shown that low-dose DHT female mice displayed obesity-independent impaired glucose tolerance, insulin resistance, and
Search for other papers by Md Nurul Islam in
Google Scholar
PubMed
Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
Search for other papers by Yuichiro Mita in
Google Scholar
PubMed
Search for other papers by Keisuke Maruyama in
Google Scholar
PubMed
Department of Sports and Fitness, Faculty of Wellness, Shigakkan University, Aichi, Japan
Search for other papers by Ryota Tanida in
Google Scholar
PubMed
Search for other papers by Weidong Zhang in
Google Scholar
PubMed
Search for other papers by Hideyuki Sakoda in
Google Scholar
PubMed
CREST (Japan) Agency for Medical Research and Development (A-MED) 1-7-1 Otemachi, Tokyo, Japan
Search for other papers by Masamitsu Nakazato in
Google Scholar
PubMed
al. 2001 , Zigman et al. 2006 ). Liver-expressed antimicrobial peptide 2 (LEAP2), a 40 amino acid peptide, was originally isolated by comprehensive chromatographic characterization of human hemofiltrate ( Krause et al. 2003 ). Human LEAP2 is