Search Results
Search for other papers by Taira Wada in
Google Scholar
PubMed
Search for other papers by Yukiko Yamamoto in
Google Scholar
PubMed
Search for other papers by Yukiko Takasugi in
Google Scholar
PubMed
Search for other papers by Hirotake Ishii in
Google Scholar
PubMed
Search for other papers by Taketo Uchiyama in
Google Scholar
PubMed
Search for other papers by Kaori Saitoh in
Google Scholar
PubMed
Search for other papers by Masahiro Suzuki in
Google Scholar
PubMed
Tokyo Adachi Hospital, Adachi, Tokyo, Japan
Search for other papers by Makoto Uchiyama in
Google Scholar
PubMed
Search for other papers by Hikari Yoshitane in
Google Scholar
PubMed
Search for other papers by Yoshitaka Fukada in
Google Scholar
PubMed
Search for other papers by Shigeki Shimba in
Google Scholar
PubMed
et al. 1999 ). Because adiponectin is a crucial factor in the regulation of glucose and lipid metabolism, inflammation, and oxidative stress, reduced adiponectin levels play a causal role in the development of insulin resistance, metabolic syndrome
Search for other papers by Shiho Fujisaka in
Google Scholar
PubMed
Search for other papers by Yoshiyuki Watanabe in
Google Scholar
PubMed
Search for other papers by Kazuyuki Tobe in
Google Scholar
PubMed
Physiological role of the gut microbiota Nutrient metabolism and absorption Degradation of indigestible polysaccharides Short-chain fatty acids (SCFAs) are metabolites generated from the fermentation of insoluble dietary fiber and
Search for other papers by Craig L Doig in
Google Scholar
PubMed
Search for other papers by Jamila Bashir in
Google Scholar
PubMed
Search for other papers by Agnieszka E Zielinska in
Google Scholar
PubMed
Search for other papers by Mark S Cooper in
Google Scholar
PubMed
Search for other papers by Paul M Stewart in
Google Scholar
PubMed
Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
glucocorticoid metabolism in inflammatory arthritis . Annals of Rheumatic Disease 67 1204 – 1210 . ( doi:10.1136/ard.2008.090662 ) Ignatova ID Kostadinova RM Goldring CE Nawrocki AR Frey FJ Frey BM 2009 Tumor necrosis factor-α upregulates 11β
Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
Search for other papers by Dawn E W Livingstone in
Google Scholar
PubMed
Search for other papers by Emma M Di Rollo in
Google Scholar
PubMed
Search for other papers by Tracy C-S Mak in
Google Scholar
PubMed
Search for other papers by Karen Sooy in
Google Scholar
PubMed
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Adrenal gland (mg) 2.3 ± 0.3 2.3 ± 0.3 Thymus (mg) 34.1 ± 2.3 34.9 ± 2.9 Plasma testosterone (pg/mL) 66 ± 10 123 ± 24* Liver glucocorticoid metabolism 11βHSD1 velocity (nmol/mg/h) 20.1 ± 2.3 16
German Center for Diabetes Research (DZD), Neuherberg, Germany
Search for other papers by S J Brandt in
Google Scholar
PubMed
German Center for Diabetes Research (DZD), Neuherberg, Germany
Search for other papers by M Kleinert in
Google Scholar
PubMed
German Center for Diabetes Research (DZD), Neuherberg, Germany
Division of Metabolic Diseases, Technische Universität, Munich, Germany
Search for other papers by M H Tschöp in
Google Scholar
PubMed
German Center for Diabetes Research (DZD), Neuherberg, Germany
Search for other papers by T D Müller in
Google Scholar
PubMed
poor. A number of psychological and economic factors are involved in such compliance, and humans might be evolutionarily predisposed to a positive energy balance ( Wells 2006 ). Furthermore, once excess weight has been gained, human metabolism
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Search for other papers by Elisa Villalobos in
Google Scholar
PubMed
Search for other papers by Allende Miguelez-Crespo in
Google Scholar
PubMed
Scotland’s Rural College, The Roslin Institute, Easter Bush Campus, United Kingdom
Search for other papers by Ruth A Morgan in
Google Scholar
PubMed
Search for other papers by Lisa Ivatt in
Google Scholar
PubMed
Search for other papers by Mhairi Paul in
Google Scholar
PubMed
Search for other papers by Joanna P Simpson in
Google Scholar
PubMed
Search for other papers by Natalie Z M Homer in
Google Scholar
PubMed
Search for other papers by Dominic Kurian in
Google Scholar
PubMed
Search for other papers by Judit Aguilar in
Google Scholar
PubMed
Search for other papers by Rachel A Kline in
Google Scholar
PubMed
Search for other papers by Thomas M Wishart in
Google Scholar
PubMed
Centre for Systems Health and Integrated Metabolic Research, Nottingham Trent University, Nottingham, United Kingdom
Search for other papers by Nicholas M Morton in
Google Scholar
PubMed
Search for other papers by Roland H Stimson in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Mark Nixon in
Google Scholar
PubMed
Abcc1 -deficient mice on HFD, we explored other mechanisms that might explain their adverse glucose metabolism phenotype. Transcriptomic and proteomic analyses reveal differential responses to high-fat diet in adipose tissue from Abcc1 -deficient
Search for other papers by David M Cartwright in
Google Scholar
PubMed
Search for other papers by Lucy A Oakey in
Google Scholar
PubMed
Search for other papers by Rachel S Fletcher in
Google Scholar
PubMed
School of Science and Technology, Nottingham Trent University, Nottingham, UK
Search for other papers by Craig L Doig in
Google Scholar
PubMed
Search for other papers by Silke Heising in
Google Scholar
PubMed
Search for other papers by Dean P Larner in
Google Scholar
PubMed
Search for other papers by Daniela Nasteska in
Google Scholar
PubMed
Search for other papers by Caitlin E Berry in
Google Scholar
PubMed
Search for other papers by Sam R Heaselgrave in
Google Scholar
PubMed
Search for other papers by Christian Ludwig in
Google Scholar
PubMed
Search for other papers by David J Hodson in
Google Scholar
PubMed
Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
Pediatric Research Center, Hospital for Child and Adolescent Medicine, Leipzig University, Leipzig, Germany
Search for other papers by Antje Garten in
Google Scholar
PubMed
metabolic and mitochondrial disorders. Beneficial effects on energy metabolism and mitochondrial function were found in animal models of diet-induced obesity ( Yoshino et al. 2011 , Cantó et al. 2012 , Yoon et al. 2015 , Mills et al. 2016 , de
Search for other papers by T V Novoselova in
Google Scholar
PubMed
Search for other papers by R Larder in
Google Scholar
PubMed
Search for other papers by D Rimmington in
Google Scholar
PubMed
Search for other papers by C Lelliott in
Google Scholar
PubMed
Search for other papers by E H Wynn in
Google Scholar
PubMed
Search for other papers by R J Gorrigan in
Google Scholar
PubMed
Search for other papers by P H Tate in
Google Scholar
PubMed
Search for other papers by L Guasti in
Google Scholar
PubMed
Search for other papers by The Sanger Mouse Genetics Project in
Google Scholar
PubMed
Search for other papers by S O’Rahilly in
Google Scholar
PubMed
Search for other papers by A J L Clark in
Google Scholar
PubMed
Search for other papers by D W Logan in
Google Scholar
PubMed
Search for other papers by A P Coll in
Google Scholar
PubMed
Search for other papers by L F Chan in
Google Scholar
PubMed
metabolism, a function known to be regulated by melanocortins ( Nogueiras et al . 2007 , Perez-Tilve et al . 2010 ). In this study, we have used an independently derived line of Mrap2 -deficient mice ( Mrap2 tm1a/tm1a ) on two different genetic
Search for other papers by Dawn E W Livingstone in
Google Scholar
PubMed
Search for other papers by Sarah L Grassick in
Google Scholar
PubMed
Search for other papers by Gillian L Currie in
Google Scholar
PubMed
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
supported the hypothesis that variations in glucocorticoid metabolism within target tissues play an important role in the pathophysiology of Metabolic Syndrome. In addition to 11β-HSD1, glucocorticoids are metabolised by several other enzymes ( Fig. 1 ). In
Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
Banting & Best Diabetes Centre, Toronto, Ontario, Canada
Search for other papers by Margaret K Hahn in
Google Scholar
PubMed
Banting & Best Diabetes Centre, Toronto, Ontario, Canada
Department of Physiology, University of Toronto, Toronto, Ontario, Canada
Search for other papers by Adria Giacca in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Toronto, Ontario, Canada
Search for other papers by Sandra Pereira in
Google Scholar
PubMed
Introduction Breakthroughs in metabolic research rely upon in vivo studies using animal models, usually rodents. Assessment of glucose metabolism in rodents is a key component of diabetes research. Although general guidelines for