Search Results

You are looking at 1 - 10 of 46 items for :

  • Refine by access: Open Access content only x
Clear All
Shun-Neng Hsu The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

Search for other papers by Shun-Neng Hsu in
Google Scholar
PubMed
Close
,
Louise A Stephen The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Louise A Stephen in
Google Scholar
PubMed
Close
,
Scott Dillon The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Scott Dillon in
Google Scholar
PubMed
Close
,
Elspeth Milne The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Elspeth Milne in
Google Scholar
PubMed
Close
,
Behzad Javaheri Comparative Biomedical Sciences, The Royal Veterinary College, London, UK

Search for other papers by Behzad Javaheri in
Google Scholar
PubMed
Close
,
Andrew A Pitsillides Comparative Biomedical Sciences, The Royal Veterinary College, London, UK

Search for other papers by Andrew A Pitsillides in
Google Scholar
PubMed
Close
,
Amanda Novak The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Amanda Novak in
Google Scholar
PubMed
Close
,
Jose Luis Millán Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA

Search for other papers by Jose Luis Millán in
Google Scholar
PubMed
Close
,
Vicky E MacRae The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Vicky E MacRae in
Google Scholar
PubMed
Close
,
Katherine A Staines Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK

Search for other papers by Katherine A Staines in
Google Scholar
PubMed
Close
, and
Colin Farquharson The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK

Search for other papers by Colin Farquharson in
Google Scholar
PubMed
Close

of CKD–mineral bone disorder (CKD–MBD) which develops in the early stages of CKD and disease progression can result in cardiovascular disease and renal osteodystrophy (ROD) – the skeletal pathology component of the CKD-MBD syndrome ( Fang et al

Open access
Amanda E Garza Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Amanda E Garza in
Google Scholar
PubMed
Close
,
Elijah Trefts Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Elijah Trefts in
Google Scholar
PubMed
Close
,
Isis A Katayama Rangel Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Isis A Katayama Rangel in
Google Scholar
PubMed
Close
,
Danielle Brooks Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Danielle Brooks in
Google Scholar
PubMed
Close
,
Rene Baudrand Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica De Chile, Santiago, Chile

Search for other papers by Rene Baudrand in
Google Scholar
PubMed
Close
,
Burhanuddin Moize Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Burhanuddin Moize in
Google Scholar
PubMed
Close
,
Jose R Romero Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Jose R Romero in
Google Scholar
PubMed
Close
,
Sanjay Ranjit Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Sanjay Ranjit in
Google Scholar
PubMed
Close
,
Thitinan Treesaranuwattana Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Thitinan Treesaranuwattana in
Google Scholar
PubMed
Close
,
Tham M Yao Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Tham M Yao in
Google Scholar
PubMed
Close
,
Gail K Adler Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Gail K Adler in
Google Scholar
PubMed
Close
,
Luminita H Pojoga Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Luminita H Pojoga in
Google Scholar
PubMed
Close
, and
Gordon H Williams Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Gordon H Williams in
Google Scholar
PubMed
Close

have expanded beyond its classical modulation of the activity of epithelial (particularly renal) cells, modifying sodium absorption and thereby participating in volume homeostasis, to include actions on non-epithelial cells, for example, cardiac, smooth

Open access
Georgina G J Hazell
Search for other papers by Georgina G J Hazell in
Google Scholar
PubMed
Close
,
Song T Yao
Search for other papers by Song T Yao in
Google Scholar
PubMed
Close
,
James A Roper
Search for other papers by James A Roper in
Google Scholar
PubMed
Close
,
Eric R Prossnitz LINE, University of New Mexico, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK

Search for other papers by Eric R Prossnitz in
Google Scholar
PubMed
Close
,
Anne-Marie O'Carroll
Search for other papers by Anne-Marie O'Carroll in
Google Scholar
PubMed
Close
, and
Stephen J Lolait
Search for other papers by Stephen J Lolait in
Google Scholar
PubMed
Close

-ir are present in the rat renal pelvis (RP), an extension of the ureter, with projections into the renal inner medulla (IM). (C) In the rat ovary, GPR30-ir is found mainly in the granulosa cells (G), with some staining of theca cells (T) of the

Open access
Michael Merkhassine Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
VCA Colonial Animal Hospital, Ithaca, New York, USA

Search for other papers by Michael Merkhassine in
Google Scholar
PubMed
Close
,
Reilly W Coch Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
Weill Cornell College of Medicine, New York, New York, USA

Search for other papers by Reilly W Coch in
Google Scholar
PubMed
Close
,
Carol E Frederick Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA

Search for other papers by Carol E Frederick in
Google Scholar
PubMed
Close
,
Lucinda L Bennett Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA

Search for other papers by Lucinda L Bennett in
Google Scholar
PubMed
Close
,
Seth A Peng Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
Fate Therapeutics, San Diego, California, USA

Search for other papers by Seth A Peng in
Google Scholar
PubMed
Close
,
Benjamin Morse Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA

Search for other papers by Benjamin Morse in
Google Scholar
PubMed
Close
,
Bethany P Cummings Center for Alimentary and Metabolic Science, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, USA
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA

Search for other papers by Bethany P Cummings in
Google Scholar
PubMed
Close
, and
John P Loftus Loftus Laboratory, Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, New York, USA

Search for other papers by John P Loftus in
Google Scholar
PubMed
Close

cell types. Proximal renal tubular cells express the glucagon receptor, and glucagon stimulates tubular glucose reabsorption ( Marks et al. 2003 ), and reduced renal glucagon receptor expression alters systemic metabolic homeostasis, including

Open access
Peter Kolkhof Drug Discovery, Cardiology Research, Bayer AG, Wuppertal, Germany

Search for other papers by Peter Kolkhof in
Google Scholar
PubMed
Close
and
Lars Bärfacker Drug Discovery, Medicinal Chemistry, Bayer AG, Wuppertal, Germany

Search for other papers by Lars Bärfacker in
Google Scholar
PubMed
Close

aldosterone activity in animals and humans. At that time, the main role of aldosterone was recognized as the control of renal sodium and potassium excretion, although the far-sighted Hans Selye called the mineralocorticoids ‘prophlogistic’ ( Selye 1955 ). In

Open access
Antonio Gázquez Department of Physiology, CEIR Campus Mare Nostrum, University of Murcia, Biomedical Research Institute of Murcia, Murcia, Spain

Search for other papers by Antonio Gázquez in
Google Scholar
PubMed
Close
,
Francisca Rodríguez Department of Physiology, CEIR Campus Mare Nostrum, University of Murcia, Biomedical Research Institute of Murcia, Murcia, Spain

Search for other papers by Francisca Rodríguez in
Google Scholar
PubMed
Close
,
María Sánchez-Campillo Department of Physiology, CEIR Campus Mare Nostrum, University of Murcia, Biomedical Research Institute of Murcia, Murcia, Spain

Search for other papers by María Sánchez-Campillo in
Google Scholar
PubMed
Close
,
Lidia E Martínez-Gascón Department of Clinical Analysis, Biomedical Research Institute of Murcia, Santa Lucia General University Hospital, Murcia, Spain

Search for other papers by Lidia E Martínez-Gascón in
Google Scholar
PubMed
Close
,
Marino B Arnao Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain

Search for other papers by Marino B Arnao in
Google Scholar
PubMed
Close
,
Pedro Saura-Garre Department of Clinical Psychology, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain

Search for other papers by Pedro Saura-Garre in
Google Scholar
PubMed
Close
,
María D Albaladejo-Otón Department of Clinical Analysis, Biomedical Research Institute of Murcia, Santa Lucia General University Hospital, Murcia, Spain

Search for other papers by María D Albaladejo-Otón in
Google Scholar
PubMed
Close
, and
Elvira Larqué Department of Physiology, CEIR Campus Mare Nostrum, University of Murcia, Biomedical Research Institute of Murcia, Murcia, Spain

Search for other papers by Elvira Larqué in
Google Scholar
PubMed
Close

nitrated proteins Renal cortex was homogenized in ice-cold 50 mmol/L Tris–HCl buffer pH 7.4 containing 1% NP-40, 0.25% sodium deoxycholate, 1 mmol/L EDTA, and 10% protease inhibitor cocktail (Sigma–Aldrich). Kidney homogenates were then centrifuged (10

Open access
Ryoko Yamamoto Orthodontics and Craniofacial Developmental Biology, Oral Growth and Developmental Biology, Department of Molecular Genetics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan

Search for other papers by Ryoko Yamamoto in
Google Scholar
PubMed
Close
,
Tomoko Minamizaki Orthodontics and Craniofacial Developmental Biology, Oral Growth and Developmental Biology, Department of Molecular Genetics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan

Search for other papers by Tomoko Minamizaki in
Google Scholar
PubMed
Close
,
Yuji Yoshiko Orthodontics and Craniofacial Developmental Biology, Oral Growth and Developmental Biology, Department of Molecular Genetics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan

Search for other papers by Yuji Yoshiko in
Google Scholar
PubMed
Close
,
Hirotaka Yoshioka Orthodontics and Craniofacial Developmental Biology, Oral Growth and Developmental Biology, Department of Molecular Genetics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan

Search for other papers by Hirotaka Yoshioka in
Google Scholar
PubMed
Close
,
Kazuo Tanne Orthodontics and Craniofacial Developmental Biology, Oral Growth and Developmental Biology, Department of Molecular Genetics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan

Search for other papers by Kazuo Tanne in
Google Scholar
PubMed
Close
,
Jane E Aubin Orthodontics and Craniofacial Developmental Biology, Oral Growth and Developmental Biology, Department of Molecular Genetics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan

Search for other papers by Jane E Aubin in
Google Scholar
PubMed
Close
, and
Norihiko Maeda Orthodontics and Craniofacial Developmental Biology, Oral Growth and Developmental Biology, Department of Molecular Genetics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan

Search for other papers by Norihiko Maeda in
Google Scholar
PubMed
Close

et al . 2006 , Kurosu et al . 2007 ). Indeed, FGF23 is released into the circulation, and it acts on renal proximal tubules to prevent phosphate reabsorption by suppressing the expression of the type IIa and type IIc sodium-dependent phosphate

Open access
Emma M Roberts
Search for other papers by Emma M Roberts in
Google Scholar
PubMed
Close
,
Michael J F Newson
Search for other papers by Michael J F Newson in
Google Scholar
PubMed
Close
,
George R Pope
Search for other papers by George R Pope in
Google Scholar
PubMed
Close
,
Rainer Landgraf Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Max Planck Institute of Psychiatry, University of Bristol, Bristol BS1 3NY, UK

Search for other papers by Rainer Landgraf in
Google Scholar
PubMed
Close
,
Stephen J Lolait
Search for other papers by Stephen J Lolait in
Google Scholar
PubMed
Close
, and
Anne-Marie O'Carroll
Search for other papers by Anne-Marie O'Carroll in
Google Scholar
PubMed
Close

, McKinley et al . 2004 ). In the kidney plasma AVP acting at the AVP V2 receptor increases renal collecting cell permeability via increased translocation, synthesis, and expression of the water channel aquaporin-2, so promoting water retention ( Knepper

Open access
Laura L Gathercole Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK

Search for other papers by Laura L Gathercole in
Google Scholar
PubMed
Close
,
Nikolaos Nikolaou Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Nikolaos Nikolaou in
Google Scholar
PubMed
Close
,
Shelley E Harris Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Shelley E Harris in
Google Scholar
PubMed
Close
,
Anastasia Arvaniti Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK

Search for other papers by Anastasia Arvaniti in
Google Scholar
PubMed
Close
,
Toryn M Poolman Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Toryn M Poolman in
Google Scholar
PubMed
Close
,
Jonathan M Hazlehurst Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK

Search for other papers by Jonathan M Hazlehurst in
Google Scholar
PubMed
Close
,
Denise V Kratschmar Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland

Search for other papers by Denise V Kratschmar in
Google Scholar
PubMed
Close
,
Marijana Todorčević Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Marijana Todorčević in
Google Scholar
PubMed
Close
,
Ahmad Moolla Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Ahmad Moolla in
Google Scholar
PubMed
Close
,
Niall Dempster Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Niall Dempster in
Google Scholar
PubMed
Close
,
Ryan C Pink Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK

Search for other papers by Ryan C Pink in
Google Scholar
PubMed
Close
,
Michael F Saikali Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Michael F Saikali in
Google Scholar
PubMed
Close
,
Liz Bentley Mammalian Genetics Unit, Medical Research Council Harwell, Oxford, UK

Search for other papers by Liz Bentley in
Google Scholar
PubMed
Close
,
Trevor M Penning Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA

Search for other papers by Trevor M Penning in
Google Scholar
PubMed
Close
,
Claes Ohlsson Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Close
,
Carolyn L Cummins Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Carolyn L Cummins in
Google Scholar
PubMed
Close
,
Matti Poutanen Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland

Search for other papers by Matti Poutanen in
Google Scholar
PubMed
Close
,
Alex Odermatt Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland

Search for other papers by Alex Odermatt in
Google Scholar
PubMed
Close
,
Roger D Cox Mammalian Genetics Unit, Medical Research Council Harwell, Oxford, UK

Search for other papers by Roger D Cox in
Google Scholar
PubMed
Close
, and
Jeremy W Tomlinson Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Jeremy W Tomlinson in
Google Scholar
PubMed
Close

, subcutaneous and peri-renal adipose depot weights ( Fig. 4A ), and adipocytes were smaller in the gonadal and subcutaneous depots ( Fig. 4B and C ). Furthermore, hepatic triacyclglycerol accumulation was reduced in Akr1d1 –/– males ( Fig. 4D ). Akr1d1

Open access
Alessandro Pocai Diabetes and Endocrinology, Merck Research Laboratories, Merck Sharp and Dohme Corp., 126 East Lincoln Avenue, Rahway, New Jersey 07065, USA

Search for other papers by Alessandro Pocai in
Google Scholar
PubMed
Close

rapidly inactivated by dipeptidyl peptidase-4 (DPP4) and its renal clearance is relatively fast ( Field et al . 2009 ). Accordingly, new drugs based on GLP1 receptor (GLP1R) agonism and DPP4 inhibition have been approved for the treatment of type 2

Open access