Search Results
Search for other papers by Antonio Gázquez in
Google Scholar
PubMed
Search for other papers by Francisca Rodríguez in
Google Scholar
PubMed
Search for other papers by María Sánchez-Campillo in
Google Scholar
PubMed
Search for other papers by Lidia E Martínez-Gascón in
Google Scholar
PubMed
Search for other papers by Marino B Arnao in
Google Scholar
PubMed
Search for other papers by Pedro Saura-Garre in
Google Scholar
PubMed
Search for other papers by María D Albaladejo-Otón in
Google Scholar
PubMed
Search for other papers by Elvira Larqué in
Google Scholar
PubMed
, who have a higher risk of developing type 2 diabetes and cardiovascular disease ( Bellamy et al. 2009 , Kramer et al. 2019 ). Several cohort studies reported decreased adiponectin concentrations in GDM women compared to their peers without
Search for other papers by Taira Wada in
Google Scholar
PubMed
Search for other papers by Yukiko Yamamoto in
Google Scholar
PubMed
Search for other papers by Yukiko Takasugi in
Google Scholar
PubMed
Search for other papers by Hirotake Ishii in
Google Scholar
PubMed
Search for other papers by Taketo Uchiyama in
Google Scholar
PubMed
Search for other papers by Kaori Saitoh in
Google Scholar
PubMed
Search for other papers by Masahiro Suzuki in
Google Scholar
PubMed
Tokyo Adachi Hospital, Adachi, Tokyo, Japan
Search for other papers by Makoto Uchiyama in
Google Scholar
PubMed
Search for other papers by Hikari Yoshitane in
Google Scholar
PubMed
Search for other papers by Yoshitaka Fukada in
Google Scholar
PubMed
Search for other papers by Shigeki Shimba in
Google Scholar
PubMed
Introduction Adiponectin is a humoral factor that is abundantly secreted by adipocytes ( Scherer et al. 1995 , Hu et al. 1996 , Maeda et al. 1996 , Nakano et al. 1996 ). Adiponectin levels are reduced in obese individuals ( Arita
Department of Veterinary Basic Sciences, Diabetes and Obesity Research Program, Faculty of Medicine, Department of Medicine, Faculty of Medicine, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
Search for other papers by M E Cleasby in
Google Scholar
PubMed
Search for other papers by Q Lau in
Google Scholar
PubMed
Search for other papers by E Polkinghorne in
Google Scholar
PubMed
Search for other papers by S A Patel in
Google Scholar
PubMed
Search for other papers by S J Leslie in
Google Scholar
PubMed
Department of Veterinary Basic Sciences, Diabetes and Obesity Research Program, Faculty of Medicine, Department of Medicine, Faculty of Medicine, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
Search for other papers by N Turner in
Google Scholar
PubMed
Department of Veterinary Basic Sciences, Diabetes and Obesity Research Program, Faculty of Medicine, Department of Medicine, Faculty of Medicine, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
Search for other papers by G J Cooney in
Google Scholar
PubMed
Search for other papers by A Xu in
Google Scholar
PubMed
Department of Veterinary Basic Sciences, Diabetes and Obesity Research Program, Faculty of Medicine, Department of Medicine, Faculty of Medicine, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
Search for other papers by E W Kraegen in
Google Scholar
PubMed
-associated insulin resistance is thus essential to underpin the development of novel pharmacological approaches to the treatment of diabetes. Adiponectin (AdipoQ, Acrp30) is an adipokine that is secreted in a mixture of trimeric, hexameric (low molecular weight) and
Search for other papers by Gulizar Issa Ameen in
Google Scholar
PubMed
Search for other papers by Silvia Mora in
Google Scholar
PubMed
that help regulate biological functions in other cells and organs. Some of these proteins like adiponectin increase insulin sensitivity in peripheral organs, some arepro-inflammatory such as IL6 or TNFa and inhibit insulin action and others like leptin
Search for other papers by Xiong Weng in
Google Scholar
PubMed
Search for other papers by Hao Jiang in
Google Scholar
PubMed
Search for other papers by David J Walker in
Google Scholar
PubMed
Search for other papers by Houjiang Zhou in
Google Scholar
PubMed
Search for other papers by De Lin in
Google Scholar
PubMed
Search for other papers by Jing Wang in
Google Scholar
PubMed
Search for other papers by Li Kang in
Google Scholar
PubMed
Signaling), pAKT(S473) (#9212, Cell Signaling), adiponectin (#2789, Cell Signaling), and β-tubulin (#ab6046, Abcam) were used at 1:1000 dilution. The secondary antibody: anti-rabbit (#P/N:926-32213, LI-COR) and anti-sheep (#NL010, R&D) were used at 1
Search for other papers by M A Hyatt in
Google Scholar
PubMed
Search for other papers by D H Keisler in
Google Scholar
PubMed
Early Life Nutrition Research Unit, Respiratory Biomedical Research Unit, Department of Animal Sciences, Division of Human Development, Academic Child Health
Search for other papers by H Budge in
Google Scholar
PubMed
Early Life Nutrition Research Unit, Respiratory Biomedical Research Unit, Department of Animal Sciences, Division of Human Development, Academic Child Health
Search for other papers by M E Symonds in
Google Scholar
PubMed
to be established in early life and is associated with a state of chronic low-grade inflammation where pro-inflammatory cytokines such as interleukin 6 (IL6) are raised, whilst anti-inflammatory markers including adiponectin are decreased in
Search for other papers by Yoshinori Kanemaru in
Google Scholar
PubMed
Search for other papers by Norio Harada in
Google Scholar
PubMed
Preemptive Medicine and Lifestyle Related Disease Research Center, Kyoto University Hospital, Kyoto, Japan
Search for other papers by Satoko Shimazu-Kuwahara in
Google Scholar
PubMed
Search for other papers by Shunsuke Yamane in
Google Scholar
PubMed
Search for other papers by Eri Ikeguchi in
Google Scholar
PubMed
Search for other papers by Yuki Murata in
Google Scholar
PubMed
Search for other papers by Sakura Kiyobayashi in
Google Scholar
PubMed
Search for other papers by Tomonobu Hatoko in
Google Scholar
PubMed
Search for other papers by Nobuya Inagaki in
Google Scholar
PubMed
, and adipose tissue ( Usdin et al . 1993 , Seino et al . 2013 , Joo et al . 2017 ), and the expression levels of GIPR mRNA did not differ among the three groups ( Fig. 4A ). Expression levels of adiponectin mRNA in adipose tissue were significantly
Search for other papers by Koichiro Taguchi in
Google Scholar
PubMed
Search for other papers by Kazuo Kajita in
Google Scholar
PubMed
Search for other papers by Yoshihiko Kitada in
Google Scholar
PubMed
Search for other papers by Masayuki Fuwa in
Google Scholar
PubMed
Search for other papers by Motochika Asano in
Google Scholar
PubMed
Search for other papers by Takahide Ikeda in
Google Scholar
PubMed
Search for other papers by Toshiko Kajita in
Google Scholar
PubMed
Search for other papers by Tatsuo Ishizuka in
Google Scholar
PubMed
Search for other papers by Itaru Kojima in
Google Scholar
PubMed
Search for other papers by Hiroyuki Morita in
Google Scholar
PubMed
proliferation of adipose tissue, we found small round cells displaying proliferative activity and expressing adipocyte-specific genes such as adiponectin and leptin in dispersed adipose tissue ( Hanamoto et al. 2013 , Kajita et al . 2013 ). These cells do
The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University, Beer-Sheva, Israel
Search for other papers by Maayan Vatarescu in
Google Scholar
PubMed
The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University, Beer-Sheva, Israel
Search for other papers by Sapir Bechor in
Google Scholar
PubMed
The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University, Beer-Sheva, Israel
Search for other papers by Yulia Haim in
Google Scholar
PubMed
The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University, Beer-Sheva, Israel
Search for other papers by Tal Pecht in
Google Scholar
PubMed
Search for other papers by Tanya Tarnovscki in
Google Scholar
PubMed
Search for other papers by Noa Slutsky in
Google Scholar
PubMed
Search for other papers by Ori Nov in
Google Scholar
PubMed
Search for other papers by Hagit Shapiro in
Google Scholar
PubMed
Search for other papers by Avishai Shemesh in
Google Scholar
PubMed
Search for other papers by Angel Porgador in
Google Scholar
PubMed
Search for other papers by Nava Bashan in
Google Scholar
PubMed
The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University, Beer-Sheva, Israel
Search for other papers by Assaf Rudich in
Google Scholar
PubMed
, revealing highly diverse response of these secreted products in adipose tissue of HFF→NC compared to HFF ( Fig. 4C ). Among others, concentrations of leptin and RBP4 were not different in HFF→NC compared to HFF, adiponectin and IL-10, but also resistin
Search for other papers by Sandra Pereira in
Google Scholar
PubMed
Search for other papers by Wen Qin Yu in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Search for other papers by María E Frigolet in
Google Scholar
PubMed
Search for other papers by Jacqueline L Beaudry in
Google Scholar
PubMed
Search for other papers by Yaniv Shpilberg in
Google Scholar
PubMed
Search for other papers by Edward Park in
Google Scholar
PubMed
Search for other papers by Cristina Dirlea in
Google Scholar
PubMed
Search for other papers by B L Grégoire Nyomba in
Google Scholar
PubMed
Search for other papers by Michael C Riddell in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Department of Physiology, University of Toronto, Department of Medicine, Mount Sinai Hospital, Toronto General Research Institute and Banting and Best Diabetes Centre, University Health Network, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York University, Department of Internal Medicine, University of Manitoba, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
Search for other papers by I George Fantus in
Google Scholar
PubMed
Search for other papers by Adria Giacca in
Google Scholar
PubMed
). Plasma FFA concentrations were determined using a colorimetric assay (Wako Pure Chemical Industries, Ltd, Osaka, Japan) ( Park et al . 2007 ). Plasma adiponectin concentrations during the basal period were determined using a kit (Cat # EZRADP-62K, EMD