Search Results
Search for other papers by Andrea Lovdel in
Google Scholar
PubMed
Search for other papers by Karla J Suchacki in
Google Scholar
PubMed
Search for other papers by Fiona Roberts in
Google Scholar
PubMed
Search for other papers by Richard J Sulston in
Google Scholar
PubMed
Search for other papers by Robert J Wallace in
Google Scholar
PubMed
Search for other papers by Benjamin J Thomas in
Google Scholar
PubMed
Search for other papers by Rachel M B Bell in
Google Scholar
PubMed
Search for other papers by Iris Pruñonosa Cervera in
Google Scholar
PubMed
Search for other papers by Gavin J Macpherson in
Google Scholar
PubMed
Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
Search for other papers by Nicholas M Morton in
Google Scholar
PubMed
Search for other papers by Natalie Z M Homer in
Google Scholar
PubMed
Search for other papers by Karen E Chapman in
Google Scholar
PubMed
Search for other papers by William P Cawthorn in
Google Scholar
PubMed
Introduction Bone marrow adipocytes comprise up to 70% of total bone marrow (BM) volume and over 10% of total adipose mass in healthy adult humans, collectively forming an integrated tissue referred to as bone marrow adipose tissue (BMAT
Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
Search for other papers by Jin-Ran Chen in
Google Scholar
PubMed
Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
Search for other papers by Oxana P Lazarenko in
Google Scholar
PubMed
Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
Search for other papers by Haijun Zhao in
Google Scholar
PubMed
Search for other papers by Alexander W Alund in
Google Scholar
PubMed
Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
Search for other papers by Kartik Shankar in
Google Scholar
PubMed
tissue and marrow phase. Cancellous bone was separated from the cortical regions by semi-automatically drawn contours. A total of 120 slices starting from about 0.1 mm distal to growth plate, constituting 0.70 mm of length, was evaluated for trabecular
Search for other papers by Katie J Mylonas in
Google Scholar
PubMed
Search for other papers by Neil A Turner in
Google Scholar
PubMed
Search for other papers by Sumia A Bageghni in
Google Scholar
PubMed
Search for other papers by Christopher J Kenyon in
Google Scholar
PubMed
Search for other papers by Christopher I White in
Google Scholar
PubMed
Search for other papers by Kieran McGregor in
Google Scholar
PubMed
Search for other papers by Robert A Kimmitt in
Google Scholar
PubMed
Search for other papers by Richard Sulston in
Google Scholar
PubMed
Search for other papers by Valerie Kelly in
Google Scholar
PubMed
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Karen E Porter in
Google Scholar
PubMed
Search for other papers by Karen E Chapman in
Google Scholar
PubMed
Search for other papers by Gillian A Gray in
Google Scholar
PubMed
1 deficient. In ‘BMKO’ animals, WT recipients received Hsd11b1 −/− bone marrow, resulting in Hsd11b1 −/− neutrophils and WT radio-resistant host tissue. Chimeric animals were housed under pathogen-free conditions in individually ventilated cages
Search for other papers by Yanli Miao in
Google Scholar
PubMed
Search for other papers by Haojie Qin in
Google Scholar
PubMed
Search for other papers by Yi Zhong in
Google Scholar
PubMed
Search for other papers by Kai Huang in
Google Scholar
PubMed
Search for other papers by Caijun Rao in
Google Scholar
PubMed
( Camilleri & Acosta 2018 ), such as reducing fat synthesis and increasing energy expenditure in key metabolic organs, such as adipose tissue. Adipose tissue can be further divided into white (WAT) and brown (BAT) adipose tissue, which are distinct in form and
Search for other papers by David E Maridas in
Google Scholar
PubMed
Search for other papers by Victoria E DeMambro in
Google Scholar
PubMed
Search for other papers by Phuong T Le in
Google Scholar
PubMed
Search for other papers by Kenichi Nagano in
Google Scholar
PubMed
Search for other papers by Roland Baron in
Google Scholar
PubMed
Search for other papers by Subburaman Mohan in
Google Scholar
PubMed
Search for other papers by Clifford J Rosen in
Google Scholar
PubMed
the report. Quantitative PCR Total RNA was isolated from cell cultures or flash frozen femurs of 16-week-old mice using TRIzol (Life Technologies) method for tissues. Bone marrow contents were not flushed out from femurs prior to RNA isolation
Search for other papers by Rebecca J Ainslie in
Google Scholar
PubMed
Search for other papers by Ioannis Simitsidellis in
Google Scholar
PubMed
Search for other papers by Phoebe M Kirkwood in
Google Scholar
PubMed
Search for other papers by Douglas A Gibson in
Google Scholar
PubMed
protecting the body from pathogens, while tissue-resident macrophages are key players in tissue homeostasis and the resolution of inflammation. Monocytes are continuously replenished from the bone marrow, where they are derived from haematopoietic stem cells
Search for other papers by Gisela Helfer in
Google Scholar
PubMed
Search for other papers by Qing-Feng Wu in
Google Scholar
PubMed
Introduction Adipokines, secreted by adipose tissue, are involved in the pathogenesis of metabolic syndrome ( Lehr et al . 2012 ). Chemerin, encoded by the gene retinoic acid receptor responder 2 ( Rarres2 ), also known as tazarotene
Search for other papers by Zhenguang Zhang in
Google Scholar
PubMed
Search for other papers by Agnes E Coutinho in
Google Scholar
PubMed
Search for other papers by Tak Yung Man in
Google Scholar
PubMed
Search for other papers by Tiina M J Kipari in
Google Scholar
PubMed
Search for other papers by Patrick W F Hadoke in
Google Scholar
PubMed
Search for other papers by Donald M Salter in
Google Scholar
PubMed
Search for other papers by Jonathan R Seckl in
Google Scholar
PubMed
Search for other papers by Karen E Chapman in
Google Scholar
PubMed
( Small et al . 2005 , McSweeney et al . 2010 , Michailidou et al . 2012 ). Global 11β-HSD1 deficiency is also pro-angiogenic in other contexts: in the sponge implantation assay ( Small et al . 2005 ); in adipose tissue of obese mice where it is
Search for other papers by David M Golding in
Google Scholar
PubMed
Search for other papers by Daniel J Rees in
Google Scholar
PubMed
Search for other papers by Jennifer R Davies in
Google Scholar
PubMed
Search for other papers by Dinko Relkovic in
Google Scholar
PubMed
Search for other papers by Hannah V Furby in
Google Scholar
PubMed
Search for other papers by Irina A Guschina in
Google Scholar
PubMed
Search for other papers by Anna L Hopkins in
Google Scholar
PubMed
Search for other papers by Jeffrey S Davies in
Google Scholar
PubMed
Search for other papers by James L Resnick in
Google Scholar
PubMed
Search for other papers by Anthony R Isles in
Google Scholar
PubMed
Search for other papers by Timothy Wells in
Google Scholar
PubMed
cervical dislocation. Inguinal, retroperitoneal and epididymal white adipose tissue (WAT) and interscapular brown adipose tissue (isBAT) fat depots and liver were excised, weighed, snap frozen and stored at −70°C for subsequent histological analysis (see
Search for other papers by Kristen R Lednovich in
Google Scholar
PubMed
Search for other papers by Sophie Gough in
Google Scholar
PubMed
Search for other papers by Medha Priyadarshini in
Google Scholar
PubMed
Search for other papers by Nupur Pandya in
Google Scholar
PubMed
Search for other papers by Chioma Nnyamah in
Google Scholar
PubMed
Search for other papers by Kai Xu in
Google Scholar
PubMed
Search for other papers by Barton Wicksteed in
Google Scholar
PubMed
Search for other papers by Sidharth Mishra in
Google Scholar
PubMed
Search for other papers by Shalini Jain in
Google Scholar
PubMed
Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
Search for other papers by Joseph L Zapater in
Google Scholar
PubMed
Search for other papers by Jose Cordoba-Chacon in
Google Scholar
PubMed
Search for other papers by Hariom Yadav in
Google Scholar
PubMed
Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
Search for other papers by Brian T Layden in
Google Scholar
PubMed
that SCFAs are able to carry out their physiological effects is through binding to their cognate receptors, including FFA2. FFA2 is broadly expressed in many metabolically active tissues, including the intestine, endocrine pancreas, adipose tissue and