Search Results
Search for other papers by Emma Rose McGlone in
Google Scholar
PubMed
Search for other papers by Stephen R Bloom in
Google Scholar
PubMed
Search for other papers by Tricia M-M Tan in
Google Scholar
PubMed
lipid metabolism, but its actions can be obscured by those of other hormones, notably insulin and GLP-1. Metabolic-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease (NAFLD)) affects one-third of the global
Search for other papers by Thomas Nicholson in
Google Scholar
PubMed
Search for other papers by Chris Church in
Google Scholar
PubMed
Search for other papers by Kostas Tsintzas in
Google Scholar
PubMed
Search for other papers by Robert Jones in
Google Scholar
PubMed
Search for other papers by Leigh Breen in
Google Scholar
PubMed
Search for other papers by Edward T Davis in
Google Scholar
PubMed
Search for other papers by David J Baker in
Google Scholar
PubMed
Search for other papers by Simon W Jones in
Google Scholar
PubMed
implications for the treatment of metabolic diseases such as type 2 diabetes ( Bluher 2014 , Bluher & Mantzoros 2015 ). It has long been established that the accumulation of abdominal fat (central adiposity) is associated with insulin resistance ( Pratley et
Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
Search for other papers by Gencer Sancar in
Google Scholar
PubMed
Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
Search for other papers by Andreas L Birkenfeld in
Google Scholar
PubMed
fat can lead to a range of metabolic abnormalities and diseases, including dyslipidemia, metabolic dysfunction-associated steatotic liver disease (MASLD), β cell dysfunction, prediabetes, and type 2 diabetes (T2D). The common denominator of these
Search for other papers by Antonia Hufnagel in
Google Scholar
PubMed
Search for other papers by Laura Dearden in
Google Scholar
PubMed
Search for other papers by Denise S Fernandez-Twinn in
Google Scholar
PubMed
Search for other papers by Susan E Ozanne in
Google Scholar
PubMed
lot of data reporting increased risk of obesity, cardiovascular diseases and type 2 diabetes (T2D) in the offspring from obese and/or GDM mothers ( Godfrey et al. 2017 ). Additionally, women with GDM are more likely to develop long-term metabolic
Search for other papers by T V Novoselova in
Google Scholar
PubMed
Search for other papers by R Larder in
Google Scholar
PubMed
Search for other papers by D Rimmington in
Google Scholar
PubMed
Search for other papers by C Lelliott in
Google Scholar
PubMed
Search for other papers by E H Wynn in
Google Scholar
PubMed
Search for other papers by R J Gorrigan in
Google Scholar
PubMed
Search for other papers by P H Tate in
Google Scholar
PubMed
Search for other papers by L Guasti in
Google Scholar
PubMed
Search for other papers by The Sanger Mouse Genetics Project in
Google Scholar
PubMed
Search for other papers by S O’Rahilly in
Google Scholar
PubMed
Search for other papers by A J L Clark in
Google Scholar
PubMed
Search for other papers by D W Logan in
Google Scholar
PubMed
Search for other papers by A P Coll in
Google Scholar
PubMed
Search for other papers by L F Chan in
Google Scholar
PubMed
Research Council (MRC) Metabolic Disease Unit (MRC_MC_UU_12012/1). L G was supported by Biotechnology and Biological Sciences Research Council (BBSRC), award BB/L00267/1 and Rosetrees Trust. Acknowledgements The authors thank the support from the
Search for other papers by Kaitlyn A Colglazier in
Google Scholar
PubMed
Search for other papers by Noyonika Mukherjee in
Google Scholar
PubMed
Search for other papers by Christopher J Contreras in
Google Scholar
PubMed
Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, Indiana, USA
Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
Search for other papers by Andrew T Templin in
Google Scholar
PubMed
pathogenesis of T1D, including metabolic stress, ER stress, inflammation, oxidative stress, and autoimmune attack. Given that identification of individuals at risk for T1D prior to the clinical onset of the disease is now possible, it is imperative that we
Search for other papers by Qinglei Yin in
Google Scholar
PubMed
Search for other papers by Liyun Shen in
Google Scholar
PubMed
Search for other papers by Yicheng Qi in
Google Scholar
PubMed
Search for other papers by Dalong Song in
Google Scholar
PubMed
Search for other papers by Lei Ye in
Google Scholar
PubMed
Search for other papers by Ying Peng in
Google Scholar
PubMed
Search for other papers by Yanqiu Wang in
Google Scholar
PubMed
Search for other papers by Zhou Jin in
Google Scholar
PubMed
Search for other papers by Guang Ning in
Google Scholar
PubMed
Search for other papers by Weiqing Wang in
Google Scholar
PubMed
Search for other papers by Dongping Lin in
Google Scholar
PubMed
Search for other papers by Shu Wang in
Google Scholar
PubMed
autoimmune thyroid disease . Autoimmunity 49 329 – 337 . ( https://doi.org/10.3109/08916934.2015.1134506 ) Scarpulla RC 2011 Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network . Biochimica et Biophysica
Search for other papers by K L Davies in
Google Scholar
PubMed
Search for other papers by J Miles in
Google Scholar
PubMed
The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
Search for other papers by E J Camm in
Google Scholar
PubMed
Search for other papers by D J Smith in
Google Scholar
PubMed
Search for other papers by P Barker in
Google Scholar
PubMed
Search for other papers by K Taylor in
Google Scholar
PubMed
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
Search for other papers by A J Forhead in
Google Scholar
PubMed
Search for other papers by A L Fowden in
Google Scholar
PubMed
Introduction Human epidemiological observations and experimental studies in animals have shown that the intrauterine environment has an important role in determining the adult metabolic and endocrine phenotype ( Hales & Barker 2001 , Gluckman
Search for other papers by Shiho Fujisaka in
Google Scholar
PubMed
Search for other papers by Yoshiyuki Watanabe in
Google Scholar
PubMed
Search for other papers by Kazuyuki Tobe in
Google Scholar
PubMed
tools and techniques have revealed close associations between bacteria and metabolic diseases. However, maintenance of a gnotobiotic status is expensive and requires experienced staff, and the available facilities for GF animals are limited. Further
Diabetes Institute, Ohio University, Athens, Ohio, USA
Department of Biological Sciences, Ohio University, Athens, Ohio, USA
Molecular & Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
Search for other papers by Ashley Patton in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Tyler Church in
Google Scholar
PubMed
Search for other papers by Caroline Wilson in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Jean Thuma in
Google Scholar
PubMed
Molecular & Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
Biomedical Engineering Program, Ohio University, Athens, Ohio, USA
Search for other papers by Douglas J Goetz in
Google Scholar
PubMed
Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA
The Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Darlene E Berryman in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
The Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Edward O List in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
Search for other papers by Frank Schwartz in
Google Scholar
PubMed
Diabetes Institute, Ohio University, Athens, Ohio, USA
Department of Biological Sciences, Ohio University, Athens, Ohio, USA
Molecular & Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
Biomedical Engineering Program, Ohio University, Athens, Ohio, USA
Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA
Search for other papers by Kelly D McCall in
Google Scholar
PubMed
of metabolic diseases, specifically obesity-related diseases such as T2DM and NAFLD. Obesity alone is considered the most important risk factor for development of NAFLD and is the driver of inflammation in this disease that is responsible for its