Search Results

You are looking at 1 - 2 of 2 items for

  • Author: B Malpaux x
  • User-accessible content x
Clear All Modify Search
Free access

F Bertrand, J Thiery, S Picard, and B Malpaux

In ewes, photoperiod modulates LH release and dopaminergic terminals in the median eminence (ME) have a critical role in the establishment of long-day inhibition of LH secretion. This study was undertaken to determine the type of dopaminergic receptors, D1-like or D2-like, that mediate the action of dopamine on LH secretion at the ME level in this situation. This was assessed, in ovariectomized and estradiol-treated ewes, with the use of reverse microdialysis in the ME in three experiments: first, when LH secretion was stimulated by short days, by determining the response to three doses (0.01, 0.1 or 1 mg/ml) of a D1-like (SKF38393) and a D2-like (quinpirole) agonist; secondly, during early long-day inhibition of LH secretion, by determining the ability of SKF38393 and quinpirole (1 mg/ml) to mimic the inhibitory effects of dopamine, after a blockade of its synthesis with alpha-methyl-para-tyrosine (alphaMPT; 2 mg/ml); and thirdly, during early long-day inhibition of LH secretion, by determining the response to three doses (0.009, 0.09 or 0.9 mg/ml) of a D1-like (SCH23390) and a D2-like (sulpiride) antagonist. In none of the conditions was effect of the D1-like analogs on LH secretion found, compared with the control treatments. In contrast, the D2-like analogs caused changes in LH secretion. First, with short days, quinpirole in the highest dose significantly reduced mean LH concentration (P<0.05) and LH pulse frequency (P<0.01). Secondly, with long days, addition of quinpirole to alphaMPT caused a significant decrease in LH secretion relative to alphaMPT alone (P<0.05). Thirdly, with long days, sulpiride at the highest dose significantly increased mean LH concentration (during the first 3 h of treatment, P<0.05) and LH pulse frequency (P<0.05). Prolactin secretion was also determined in these experiments, and D2-like agonist and antagonist caused an inhibition and a stimulation of prolactin secretion, respectively. These results demonstrate that, in the ME, inhibitory action of dopamine on LH secretion, critical for the initiation of long-day-induced inhibition, is mediated by D2-like, not D1-like, dopaminergic receptors.

Free access

A Gomez Brunet, A Gomez Brunet, B Malpaux, A Daveau, C Taragnat, and P Chemineau

Genetic variability in plasma melatonin concentrations in ewes results from variations in pineal weight. This study investigated whether it is due to a difference in the number of pinealocytes, or in their size. Two groups of lambs were assigned before birth to being extremes (18 High and 21 Low) by calculating their genetic value on the basis of the melatonin concentrations of their parents. Lambs were bled from 1 week of age until 14 weeks of age. Pineal gland, brain and pituitary weights, length and width of the brain, and length of the hypothalamus were recorded. A significant effect (ANOVA) of genetic group (P<0.05) and age (P<0.05) was detected on mean nocturnal plasma melatonin concentrations, as soon as the first week after birth (mean +/- s.e.m.; High: 51.7 +/- 10.7 vs Low: 31.9 +/- 3.2 pg/ml). There was no difference between the two genetic groups in any of the brain parameters measured, but the pineal glands of the High group were heavier and contained significantly more pinealocytes (High: 27.8 +/- 2.4 vs Low: 21.0 +/- 2.4 x 10(6); P<0.05) than those in the Low group. The mean size of pinealocytes did not differ between the two genetic groups. Thus, the genetic variability in nocturnal plasma melatonin concentrations in sheep is expressed by 1 week of age and higher levels of secretion are the consequence of larger pineal glands containing a greater number of pinealocytes.