Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Henrik Oster x
  • User-accessible content x
Clear All Modify Search
Free access

Henrik Oster

Endogenous circadian clocks adapt an organism’s physiology and behavior to predictable changes in the environment as a consequence of the Earth’s rotation around its axis. In mammals, circadian rhythms are the output of a ubiquitous network of cellular timers coordinated by a hypothalamic master pacemaker. Circadian clock function is closely connected to the stress response system which has evolved to ensure survival under less predictable situations of danger. Disruptions in both of these functions are highly prevalent in modern society and have been linked to pathologic alterations in metabolic setpoints, promoting overeating, obesity, and type-2 diabetes. This paper describes the different levels of interaction between the circadian clock and acute and chronic stress responses. It summarizes studies assessing clock-stress crosstalk in the context of metabolic homeostasis and outlines options to use this interaction for diagnostic and therapeutic measures targeting metabolic health and well-being in the highly chronodisruptive environment of modern 24-h globalized societies.

Free access

Anthony H Tsang, Mariana Astiz, Maureen Friedrichs, and Henrik Oster

Endogenous circadian clocks regulate 24-h rhythms of behavior and physiology to align with external time. The endocrine system serves as a major clock output to regulate various biological processes. Recent findings suggest that some of the rhythmic hormones can also provide feedback to the circadian system at various levels, thus contributing to maintaining the robustness of endogenous rhythmicity. This delicate balance of clock–hormone interaction is vulnerable to modern lifestyle factors such as shiftwork or high-calorie diets, altering physiological set points. In this review, we summarize the current knowledge on the communication between the circadian timing and endocrine systems, with a focus on adrenal glucocorticoids and metabolic peptide hormones. We explore the potential role of hormones as systemic feedback signals to adjust clock function and their relevance for the maintenance of physiological and metabolic circadian homeostasis.