Search Results

You are looking at 101 - 110 of 2,104 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
  • User-accessible content x
Clear All Modify Search
Free access

Almas R Juma, Pauliina E Damdimopoulou, Sylvia V H Grommen, Wim J M Van de Ven, and Bert De Groef

Pleomorphic adenoma gene 1 (PLAG1) belongs to the PLAG family of zinc finger transcription factors along with PLAG-like 1 and PLAG-like 2. The PLAG1 gene is best known as an oncogene associated with certain types of cancer, most notably pleomorphic adenomas of the salivary gland. While the mechanisms of PLAG1-induced tumorigenesis are reasonably well understood, the role of PLAG1 in normal physiology is less clear. It is known that PLAG1 is involved in cell proliferation by directly regulating a wide array of target genes, including a number of growth factors such as insulin-like growth factor 2. This is likely to be a central mode of action for PLAG1 both in embryonic development and in cancer. The phenotype of Plag1 knockout mice suggests an important role for PLAG1 also in postnatal growth and reproduction, as PLAG1 deficiency causes growth retardation and reduced fertility. A role for PLAG1 in growth and reproduction is further corroborated by genome-wide association studies in humans and domestic animals in which polymorphisms in the PLAG1 genomic region are associated with body growth and reproductive traits. Here we review the current evidence for PLAG1 as a regulator of growth and fertility and discuss possible endocrine mechanisms involved.

Free access

Tamiki Hikake, Shinji Hayashi, Taisen Iguchi, and Tomomi Sato

IGF1 knockout (IGF1KO) mice show a reduced number of prolactin (PRL) producing cells (PRL cells); however, the role of IGF1 in PRL cell proliferation and differentiation in immature mice is unclear. In this study, ontogenic changes in the percentages of PRL cells, GH producing cells (GH cells), and 5-bromo-2′-deoxyuridine (BrdU)-labeled cells in the anterior pituitary of male IGF1KO mice during the postnatal period were investigated. The percentage of PRL cells in IGF1KO mice was significantly lower at day 20 compared with that in wild-type (WT) mice, while GH cells in IGF1KO mice were significantly increased from day 10. From days 5 to 20, the percentage of BrdU-labeled cells in WT and IGF1KO mice was similar. PRL cells and GH cells are thought to originate from the same progenitor cells, therefore, PRL cells in IGF1KO mice are not able to differentiate because progenitor cells have already committed to be GH cells. However, IGF1, 17β-estradiol (E2), epidermal growth factor (EGF), or IGF1 plus E2 treatments increased the PRL cell number in the pituitaries in vitro of 10-day-old WT and IGF1KO mice. This fact suggests that these factors are involved in PRL cell proliferation and differentiation. In addition, the increase of PRL cells in IGF1KO mice stimulated by E2 or EGF was less than that of WT mice. Thus, IGF1 plays a crucial role in PRL cell proliferation and differentiation in mouse pituitaries by regulating the differentiation of progenitor cells and mediating the actions of E2 and EGF.

Free access

BD Rodgers, M Bernier, and MA Levine

Adipocyte beta-adrenergic sensitivity is compromised in animal models of obesity and type 2 diabetes. Although changes in the membrane concentrations of G-protein alpha subunits (Galpha) have been implicated, it remains to be determined how these changes are affected by insulin resistance in the different animal models. Because previous studies used young animals, we measured the concentrations of Galpha and Gbeta subunits in epididymal fat from aged (48 weeks old) db/db mice and from their lean littermates to more closely reproduce the model of type 2 diabetes mellitus. Levels of immunoreactive Galphas, Galphai(1/2), Galphao and Galphaq/11 were all significantly greater in adipocyte membranes from the db/db mice than in membranes from their lean non-diabetic littermate controls. Levels of Galphai(1) and Galphai(2) were also individually determined and although they appeared to be slightly higher in db/db membranes, these differences were not significant. Although the levels of both Galphas isoforms were elevated, levels of the 42 and 46 kDa proteins rose by approximately 42% and 20% respectively, indicating differential protein processing of Galphas. By contrast, levels of Galphai3 were similar in the two groups. The levels of common Gbeta and Gbeta2 were also elevated in db/db mice, whereas Gbeta1 and Gbeta4 levels were not different. To determine whether these changes were due to insulin resistance per se or to elevated glucocorticoid production, G-protein subunit levels were quantified in whole cell lysates from 3T3-L1 adipocytes that were stimulated with different concentrations of either insulin or corticosterone. Although none of the subunit levels was affected by insulin, the levels of both Galphas isoforms were increased equally by corticosterone in a concentration-dependent manner. Since glucocorticoids are known regulators of Galphas gene expression in many cell types and in adipocytes from diabetic rodents, the results presented herein appear to more accurately reflect diabetic pathophysiology than do those of previous studies which report a decrease in Galphas levels. Taken together, these results indicate that most of the selective changes in G-protein subunit production in adipocytes from this animal model of type 2 diabetes may not be due to diminished insulin sensitivity, but may be due to other endocrine or metabolic abnormalities associated with the diabetic phenotype.

Free access

Shiying Shao, Yun Gao, Bing Xie, Fei Xie, Sai Kiang Lim, and GuoDong Li

Shortage of cadaveric pancreata and requirement of immune suppression are two major obstacles in transplantation therapy of type 1 diabetes. Here, we investigate whether i.p. transplantation of alginate-encapsulated insulin-producing cells from the embryo-derived mouse embryo progenitor-derived insulin-producing-1 (MEPI-1) line could lower hyperglycemia in immune-competent, allogeneic diabetic mice. Within days after transplantation, hyperglycemia was reversed followed by about 2.5 months of normo- to moderate hypoglycemia before relapsing. Mice transplanted with unencapsulated MEPI cells relapsed within 2 weeks. Removal of the transplanted capsules by washing of the peritoneal cavity caused an immediate relapse of hyperglycemia that could be reversed with a second transplantation. The removed capsules had fibrotic overgrowth but remained permeable to 70 kDa dextrans and displayed glucose-stimulated insulin secretion. Following transplantation, the number of cells in capsules increased initially, before decreasing to below the starting cell number at 75 days. Histological examination showed that beyond day 40 post-transplantation, encapsulated cell clusters exhibited proliferating cells with a necrotic core. Blood glucose, insulin levels, and oral glucose tolerance test in the transplanted animals correlated directly with the number of viable cells remaining in the capsules. Our study demonstrated that encapsulation could effectively protect MEPI cells from the host immune system without compromising their ability to correct hyperglycemia in immune-competent diabetic mice for 2.5 months, thereby providing proof that immunoisolation of expansible but immune-incompatible stem cell-derived surrogate β-cells by encapsulation is a viable diabetes therapy.

Free access

Susan Kralisch, Anke Tönjes, Kerstin Krause, Judit Richter, Ulrike Lossner, Peter Kovacs, Thomas Ebert, Matthias Blüher, Michael Stumvoll, and Mathias Fasshauer

Rather than a traditional growth factor, fibroblast growth factor-21 (FGF21) is considered to be a metabolic hormone. In the current study, we investigated serum FGF21 levels in the self-contained population of Sorbs. Serum FGF21 concentrations were quantified by ELISA and correlated with IGF1 as well as metabolic, renal, hepatic, inflammatory, and cardiovascular parameters in 913 Sorbs from Germany. Moreover, human IGF1 protein secretion was investigated in FGF21-stimulated HepG2 cells. Median FGF21 serum concentrations were 2.1-fold higher in subjects with type 2 diabetes mellitus (141.8 ng/l) compared with controls (66.7 ng/l). Furthermore, nondiabetic subjects with FGF21 levels below the detection limit of the ELISA showed a more beneficial metabolic profile compared with subjects with measurable FGF21. Moreover, FGF21 was significantly lower in female compared with male subjects after adjustment for age and BMI. In multiple regression analyses, circulating FGF21 concentrations remained independently and positively associated with gender, systolic blood pressure, triglycerides, and γ glutamyl transferase whereas a negative association was observed with IGF1 in nondiabetic subjects. Notably, FGF21 significantly inhibited IGF1 secretion into HepG2 cell culture supernatants in preliminary in vitro experiments. FGF21 serum concentrations are associated with facets of the metabolic syndrome, hepatocellular function, as well as GH status.

Free access

Joshua Columbus, YuTing Chiang, Weijuan Shao, Nina Zhang, Dingyan Wang, Herbert Y Gaisano, Qinghua Wang, David M Irwin, and Tianru Jin

Specific single-nucleotide polymorphisms in intronic regions of human TCF7L2 are associated with an elevated risk of developing type 2 diabetes. Whether Tcf7l2 is expressed in pancreatic islets of rodent species at a considerable level, however, remains controversial. We used RT-PCR and quantitative RT-PCR to examine Tcf7l2 expression in rodent gut, pancreas, isolated pancreatic islets, and cultured cell lines. The expression level of Tcf7l2 was relatively lower in the pancreas compared to the gut or the pancreatic β-cell line Ins-1. Immunostaining did not detect a Tcf7l2 signal in mouse pancreatic islets. Endogenous canonical Wnt activity was not appreciable in the pancreas of TOPGAL transgenic mice. Both Tcf7 and Tcf7l1, but not Lef1, were expressed in the pancreas. The expression of the three Tcf genes (Tcf7, Tcf7l1, and Tcf7l2) in the pancreas was reduced by treatment with insulin or high-fat diet feeding, in contrast to the stimulation of Tcf7l2 expression by insulin in the gut. We suggest that hyperinsulinemia represses Tcf gene expression in the pancreas. Whether and how this reduction alters the function of pancreatic β cells during hyperinsulinemia deserves further investigation.

Free access

Yan Ding and Mary E Choi

Diabetic nephropathy (DN) is the most common cause of end-stage kidney disease worldwide, and is associated with increased morbidity and mortality in patients with both type 1 and type 2 diabetes. Increasing prevalence of diabetes has made the need for effective treatment of DN critical and thereby identifying new therapeutic targets to improve clinical management. Autophagy is a highly conserved ‘self-eating’ pathway by which cells degrade and recycle macromolecules and organelles. Autophagy serves as an essential mechanism to maintain homeostasis of glomeruli and tubules, and plays important roles in human health and diseases. Impairment of autophagy is implicated in the pathogenesis of DN. Emerging body of evidence suggests that targeting the autophagic pathway to activate and restore autophagy activity may be renoprotective. In this review, we examine current advances in our understanding of the roles of autophagy in diabetic kidney injury, focusing on studies in renal cells in culture, human kidney tissues, and experimental animal models of diabetes. We discuss the major nutrient-sensing signal pathways and diabetes-induced altered intracellular metabolism and cellular events, including accumulation of advanced glycation end-products, increased oxidative stress, endoplasmic reticulum stress, hypoxia, and activation of the renin–angiotensin system, which modulate autophagic activity and contribute to the development of DN. We also highlight recent studies of autophagy and transforming growth factor-β in renal fibrosis, the final common response to injury that ultimately leads to end-stage kidney failure in both type 1 and type 2 diabetes. These findings suggest the possibility that autophagy can be a therapeutic target against DN.

Free access

Brenda Anguiano, Alejandra López, Guadalupe Delgado, Carlos Romero, and Carmen Aceves

The aim of this study was to characterize the type of 5′-deiodinase activity in the prostate of pubescent rats (7–8 weeks), to establish its distribution in the lobes (ventral, dorsolateral, and anterior), and to analyze its modulation by prolactin (PRL), testosterone, dihydrotestosterone (DHT), and 17β-estradiol (E2). Our results showed that the enzymatic activity was highly susceptible to inhibition by 6-n-propyl-2-thiouracil and gold thioglucose, its preferential substrate was reverse tri-iodothyronine (rT3), it exhibited a low dithiothreitol requirement (5 mM), and the apparent K m and V max values for substrate (rT3) were approximately 0.25 μM and 9.0 pmol liberated/mg protein per hour, respectively. All these characteristics indicate the preferential expression of type 1 deiodinase (D1), which was corroborated by demonstrating the presence of D1 mRNA in prostate. D1 activity was detected in all lobes and was most abundant in the dorsolateral. Although we detected type 2 deiodinase (D2) mRNA expression, the D2 activity was almost undetectable. D1 activity was enhanced in animals with hyperthyroidism and hyperprolactinemia, in intact animals treated with finasteride (inhibitor of local DHT production), and in castrated animals with E2 replacement. In contrast, activity diminished in castrated animals with testosterone replacement. Our results suggest that thyroid hormones, PRL, and E2 exert a positive modulation on D1 activity, while testosterone and DHT exhibit an inhibitory effect. D1 activity may be associated with prostate maturation and/or function.

Free access

Berit Svendsen, Ramona Pais, Maja S Engelstoft, Nikolay B Milev, Paul Richards, Charlotte B Christiansen, Kristoffer L Egerod, Signe M Jensen, Abdella M Habib, Fiona M Gribble, Thue W Schwartz, Frank Reimann, and Jens J Holst

The incretin hormones glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from intestinal endocrine cells, the so-called L- and K-cells. The cells are derived from a common precursor and are highly related, and co-expression of the two hormones in so-called L/K-cells has been reported. To investigate the relationship between the GLP1- and GIP-producing cells more closely, we generated a transgenic mouse model expressing a fluorescent marker in GIP-positive cells. In combination with a mouse strain with fluorescent GLP1 cells, we were able to estimate the overlap between the two cell types. Furthermore, we used primary cultured intestinal cells and isolated perfused mouse intestine to measure the secretion of GIP and GLP1 in response to different stimuli. Overlapping GLP1 and GIP cells were rare (∼5%). KCl, glucose and forskolin+IBMX increased the secretion of both GLP1 and GIP, whereas bombesin/neuromedin C only stimulated GLP1 secretion. Expression analysis showed high expression of the bombesin 2 receptor in GLP1 positive cells, but no expression in GIP-positive cells. These data indicate both expressional and functional differences between the GLP1-producing ‘L-cell’ and the GIP-producing ‘K-cell’.

Free access

SH Torres, JB De Sanctis, L M de Briceno, N Hernandez, and HJ Finol

An inflammatory process may be involved in nitric oxide production in skeletal muscle of type 2 diabetic patients. Nitric oxide generation in skeletal muscle was assessed in 14 non-complicated type 2 diabetic patients and in 12 healthy subjects. In samples of quadriceps femoris muscle, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nitrite, nitrate and nitrotyrosine were determined. The macrophage-specific antigen CD163, the T-cell membrane factor CD154 and tumour necrosis factor-alpha (TNF-alpha) were also assayed. In six patients, ultrastructural analysis of muscle was performed. Nitrites and nitrates were increased in patients as compared to controls (22.7+/-4.5 and 32.7+/-7.0 vs 16.0+/-2.9 and 22.8+/-4.0 micromol/mg protein; P<0.001, Mann-Whitney U test). Endothelial NOS was similar in diabetic and control subjects (36.4+/-13.8 vs 36.3+/-6.8 ng/mg protein), contrasting with the significant increase of iNOS recorded in patients (34.3+/-13.0 vs 8.5+/-2.8 ng/mg protein, P<0.00002). Nitrotyrosine levels were higher in the patient than in the control group (42.1+/-24.4 vs 10.3+/-2.5 ng/mg protein, P<0.00002), as were CD163 (10-fold) and TNF-alpha (fourfold) levels. Furthermore, CD154 levels were detectable only in the patient samples (10.2+/-5.3 ng/mg protein). By multiple-regression analysis, changes in glycated haemoglobin values could predict 96% variation in nitrotyrosine. Macrophages were present in all muscle samples analysed by electromicroscopy. The increased levels of CD163, CD154 and TNF-alpha indicate that an inflammatory process occurs in skeletal muscle of type 2 diabetic patients. This may contribute to iNOS induction, muscle damage and insulin resistance.