Search Results

You are looking at 1 - 2 of 2 items for

  • Author: A Faure-Dussert x
  • User-accessible content x
Clear All Modify Search
Free access

PM Bourlon, B Billaudel and A Faure-Dussert

Because 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) is known to activate the biosynthesis of numerous proteins in various tissues, experiments were undertaken to compare the influence of 1,25(OH)2D3 in vitro on both the secretion and biosynthesis of insulin in islets of Langerhans from both 4-week vitamin D3-deficient rats and normal rats. Islets were either incubated or perifused after a 6-h induction period in the presence of various concentrations of 1, 25(OH)2D3 from 10(-12) M, which was inactive in controls, to 10(-6) M. Experiments were performed in the presence of a non-labelled amino acid mixture, to favour protein synthesis. Tritiated tyrosine was added as tracer during glucose stimulation. The newly synthesised proteins, labelled with [3H]tyrosine, were extracted by an acid-alcohol method and separated by gel chromatography adapted for low-molecular-weight proteins. Even in the presence of the amino acid mixture, the insulin response of the islets to 16.7 mM glucose was decreased by vitamin D3 deficiency and improved by 1,25(OH)2D3. This beneficial effect did not occur in basal conditions, but only during glucose stimulation, and was observed in both phases of insulin release. Moreover, these effects disappeared in the presence of 5x10(-4 )M cycloheximide, a protein biosynthesis inhibitor. Islets from vitamin D3-deficient rats exhibited a general decrease in the amount of de novo biosynthesised proteins and of [3H]tyrosine-labelled insulin and proinsulin fractions. A 6-h period of 1,25(OH)2D3 induction significantly improved the amount of de novo biosynthesised proteins, and particularly of newly synthesised insulin in response to a 2-h glucose stimulation. Calculation of the rate of conversion of newly synthesised proinsulin-like material to insulin as the [3H]insulin/[3H]proinsulin-like material ratio provided evidence for a dose-dependent increase, induced by 1, 25(OH)2D3, that could exceed that of normal islets. These data support the hypothesis that 1,25(OH)2D3 in vitro not only facilitated the biosynthetic capacity of the beta cell - which was highly induced during a 16.7-mM glucose stimulation, via a global activation of islets protein biosynthesis - but also produced an acceleration of the conversion of proinsulin to insulin.

Free access

PM Bourlon, A Faure-Dussert and B Billaudel

Since both the release and de novo biosynthesis of insulin are severely decreased by vitamin D3 deficiency and improved by 1, 25-dihydroxyvitamin D3 (1,25(OH)2D3) repletion following a 6-h delay in the rat, the present experiments investigated the effects of vitamin D3 deficiency on the biosynthesis of heavier molecular weight proteins using electrophoretic separation. Gel protein staining by Coomassie blue showed very different profiles for islets protein production from 4-week vitamin D3-deficient rats compared with normal islets. The pattern was characterised by a decrease in high molecular weight proteins, concomitantly accompanied by an increase in low molecular weight proteins. This tendency was partially reversed in vivo by 1,25(OH)2D3 repletion treatment for 7 days and was evident after only 16 h of treatment. In parallel with these in vivo observations, which represent a static index of islets protein production, a kinetic study was performed in vitro by a double-labelling method allowing us to measure the de novo synthesis of proteins in islets during a strong 16.7 mM glucose stimulation. Comparison of 3H and 14C labelled samples was achieved via coelectrophoresis to avoid experimental artefacts. The study of the ratio of d.p.m. 3H/d.p.m. 14C for each molecular weight protein in islets stimulated by 16.7 mM glucose (versus basal 4.2 mM glucose) showed an increase in the height of certain peaks: 150, 130 and 8.5 kDa. Under the same conditions, islets from 4-week vitamin D3-deficient rats (versus normal islets) presented a large deficit of numerous newly synthesised proteins and particularly those implicated in the response to glucose stimulation. In vitro repletion of 1,25(OH)2D3 tended to reverse, at least in part, the deleterious effect of vitamin D3 deficiency on the de novo protein synthesis of islets but these effects were gradual. Indeed, there was no detectable effect at 2 h incubation, but 1,25(OH)2D3 increased the 60 to 65 kDa, 55 kDa, and 9 to 8 kDa molecular mass proteins at 4 h, and increased the level of most newly synthesised proteins at 6 h. These data support the hypothesis of a beneficial genomic influence of 1,25(OH)2D3 that occurs progressively within the islets of Langerhans and which may prepare the beta cells for an enhanced response to glucose stimulation.