Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Danny Zipris x
  • Refine by access: Content accessible to me x
Clear All Modify Search
James C Needell Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, USA

Search for other papers by James C Needell in
Google Scholar
PubMed
Close
,
Madalyn N Brown Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, USA

Search for other papers by Madalyn N Brown in
Google Scholar
PubMed
Close
, and
Danny Zipris Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, USA

Search for other papers by Danny Zipris in
Google Scholar
PubMed
Close

The etiopathogenesis of type 1 diabetes (T1D) remains poorly understood. We used the LEW1.WR1 rat model of Kilham rat virus (KRV)-induced T1D to better understand the role of the innate immune system in the mechanism of virus-induced disease. We observed that infection with KRV results in cell influx into visceral adipose tissue soon following infection prior to insulitis and hyperglycemia. In sharp contrast, subcutaneous adipose tissue is free of cellular infiltration, whereas β cell inflammation and diabetes are observed beginning on day 14 post infection. Immunofluorescence studies further demonstrate that KRV triggers CD68+ macrophage recruitment and the expression of KRV transcripts and proinflammatory cytokines and chemokines in visceral adipose tissue. Adipocytes from naive rats cultured in the presence of KRV express virus transcripts and upregulate cytokine and chemokine gene expression. KRV induces apoptosis in visceral adipose tissue in vivo, which is reflected by positive TUNEL staining and the expression of cleaved caspase-3. Moreover, KRV leads to an oxidative stress response and downregulates the expression of adipokines and genes associated with mediating insulin signaling. Activation of innate immunity with Poly I:C in the absence of KRV leads to CD68+ macrophage recruitment to visceral adipose tissue and a decrease in adipokine expression detected 5 days following Poly (I:C) treatment. Finally, proof-of-principle studies show that brief anti-inflammatory steroid therapy suppresses visceral adipose tissue inflammation and protects from virus-induced disease. Our studies provide evidence raising the hypothesis that visceral adipose tissue inflammation and dysfunction may be involved in early mechanisms triggering β cell autoimmunity.

Free access
Chun Zeng Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA

Search for other papers by Chun Zeng in
Google Scholar
PubMed
Close
,
Xin Yi Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA

Search for other papers by Xin Yi in
Google Scholar
PubMed
Close
,
Danny Zipris Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA

Search for other papers by Danny Zipris in
Google Scholar
PubMed
Close
,
Hongli Liu Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA

Search for other papers by Hongli Liu in
Google Scholar
PubMed
Close
,
Lin Zhang Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA

Search for other papers by Lin Zhang in
Google Scholar
PubMed
Close
,
Qiaoyun Zheng Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA

Search for other papers by Qiaoyun Zheng in
Google Scholar
PubMed
Close
,
Krishnamurthy Malathi Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA

Search for other papers by Krishnamurthy Malathi in
Google Scholar
PubMed
Close
,
Ge Jin Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA

Search for other papers by Ge Jin in
Google Scholar
PubMed
Close
, and
Aimin Zhou Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA
Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA
Clinical Chemistry Program, Center for Gene Regulation in Health and Diseases, Department of Cancer Biology, Barbara Davis Center of Childhood Diabetes, Central Laboratory, Department of Biological Sciences, Department of Biological Sciences, Department of Chemistry, Cleveland State University, SI 424, Cleveland, Ohio 44115, USA

Search for other papers by Aimin Zhou in
Google Scholar
PubMed
Close

The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-dependent RNase L (RNase L), an IFNα-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type 1 diabetes. Using RNase L-deficient, rat insulin promoter-B7.1 transgenic mice, which are more vulnerable to harmful environmental factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin, a drug which can artificially induce type 1-like diabetes in experimental animals. Immunohistochemical staining results indicated that the population of infiltrated CD8+T cells was remarkably reduced in the islets of RNase L-deficient mice, indicating that RNase L may contribute to type 1 diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas under induced conditions. Our findings provide new insights into the molecular mechanism underlying β-cell destruction and may indicate novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L.

Free access