Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Fei Gao x
  • Refine by access: Content accessible to me x
Clear All Modify Search
Shiying Shao Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore
Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore

Search for other papers by Shiying Shao in
Google Scholar
PubMed
Close
,
Yun Gao Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore

Search for other papers by Yun Gao in
Google Scholar
PubMed
Close
,
Bing Xie Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore
Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore

Search for other papers by Bing Xie in
Google Scholar
PubMed
Close
,
Fei Xie Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore

Search for other papers by Fei Xie in
Google Scholar
PubMed
Close
,
Sai Kiang Lim Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore
Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore

Search for other papers by Sai Kiang Lim in
Google Scholar
PubMed
Close
, and
GuoDong Li Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore
Department of Clinical Research, Cardiovascular Research Institute, Institute of Medical Biology, Department of Surgery, Singapore General Hospital, Block A, #03-04, 7 Hospital Drive, SingHealth Research Facility, Singapore, 169611 Singapore

Search for other papers by GuoDong Li in
Google Scholar
PubMed
Close

Shortage of cadaveric pancreata and requirement of immune suppression are two major obstacles in transplantation therapy of type 1 diabetes. Here, we investigate whether i.p. transplantation of alginate-encapsulated insulin-producing cells from the embryo-derived mouse embryo progenitor-derived insulin-producing-1 (MEPI-1) line could lower hyperglycemia in immune-competent, allogeneic diabetic mice. Within days after transplantation, hyperglycemia was reversed followed by about 2.5 months of normo- to moderate hypoglycemia before relapsing. Mice transplanted with unencapsulated MEPI cells relapsed within 2 weeks. Removal of the transplanted capsules by washing of the peritoneal cavity caused an immediate relapse of hyperglycemia that could be reversed with a second transplantation. The removed capsules had fibrotic overgrowth but remained permeable to 70 kDa dextrans and displayed glucose-stimulated insulin secretion. Following transplantation, the number of cells in capsules increased initially, before decreasing to below the starting cell number at 75 days. Histological examination showed that beyond day 40 post-transplantation, encapsulated cell clusters exhibited proliferating cells with a necrotic core. Blood glucose, insulin levels, and oral glucose tolerance test in the transplanted animals correlated directly with the number of viable cells remaining in the capsules. Our study demonstrated that encapsulation could effectively protect MEPI cells from the host immune system without compromising their ability to correct hyperglycemia in immune-competent diabetic mice for 2.5 months, thereby providing proof that immunoisolation of expansible but immune-incompatible stem cell-derived surrogate β-cells by encapsulation is a viable diabetes therapy.

Free access
Jie Liu College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
Department of Biology, Shantou University, Shantou, China

Search for other papers by Jie Liu in
Google Scholar
PubMed
Close
,
Fei Gao Department of Biology, Shantou University, Shantou, China

Search for other papers by Fei Gao in
Google Scholar
PubMed
Close
,
Yue-Fang Liu College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Yue-Fang Liu in
Google Scholar
PubMed
Close
,
Hai-Ting Dou College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Hai-Ting Dou in
Google Scholar
PubMed
Close
,
Jia-Qi Yan College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Jia-Qi Yan in
Google Scholar
PubMed
Close
,
Zong-Min Fan College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Zong-Min Fan in
Google Scholar
PubMed
Close
, and
Zeng-Ming Yang College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Zeng-Ming Yang in
Google Scholar
PubMed
Close

Embryo implantation and decidualization are key steps for successful reproduction. Although numerous factors have been identified to be involved in embryo implantation and decidualization, the mechanisms underlying these processes are still unclear. Based on our preliminary data, Prss56, a trypsin-like serine protease, is strongly expressed at implantation site in mouse uterus. However, the expression, regulation and function of Prss56 during early pregnancy are still unknown. In mouse uterus, Prss56 is strongly expressed in the subluminal stromal cells at implantation site on day 5 of pregnancy compared to inter-implantation site. Under delayed implantation, Prss56 expression is undetected. After delayed implantation is activated by estrogen, Prss56 is obviously induced at implantation site. Under artificial decidualization, Prss56 signal is seen at the primary decidual zone at the initial stage of artificial decidualization. When stromal cells are induced for in vitro decidualization, Prss56 expression is significantly elevated. Dtprp expression under in vitro decidualization is suppressed by Prss56 siRNA. In cultured stromal cells, HB-EGF markedly stimulates Prss56 expression through EGFR/ERK pathway. Based on promoter analysis, we also showed that Egr2 is involved in Prss56 regulation by HB-EGF. Collectively, Prss56 expression at implantation site is modulated by HB-EGF/EGFR/ERK signaling pathway and involved in mouse decidualization.

Free access