Search Results

You are looking at 1 - 2 of 2 items for

  • Author: J. Mackenzie x
  • User-accessible content x
Clear All Modify Search
Free access

A Albalat, C Liarte, S MacKenzie, L Tort, J V Planas and I Navarro

Tumor necrosis factor-α (TNFα) is a cytokine with multiple biological functions which, in mammals, has been shown to modulate muscle and adipose tissue metabolism. In fish, TNFα has been identified in several species. However, few studies have examined the role of TNFα in fish outside the immune system. In this study, we assessed the effects of human recombinant TNFα and conditioned media from rainbow trout lipopolysaccharide (LPS)-stimulated macrophages (LPS-MCM) on lipolysis in isolated rainbow trout adipocytes. Furthermore, we studied the effects of an LPS injection in vivo on lipid metabolism. In our study, human recombinant TNFα stimulated lipolysis in trout adipocytes in a time- and dose-dependent manner. Similarly, LPS-MCM stimulated lipolysis in trout adipocytes when compared with control conditioned medium. Experiments using specific inhibitors of the MAP kinase pathway showed that p44/42 and p38 are partially involved in the lipolytic effects of TNFα. On the other hand, adipocytes from LPS-injected rainbow trout showed higher basal lipolysis than adipocytes from control fish after 24 h, while this effect was not seen at 72 h. Furthermore, lipoprotein lipase (LPL) activity in adipose tissue of LPS-injected fish was lower than in the controls at 24 h. These data suggest that TNFα plays an important role in the control of lipid metabolism in rainbow trout by stimulating lipolysis in vitro and in vivo and by down-regulating LPL activity of adipose tissue in vivo.

Open access

Ping Ye, Christopher J Kenyon, Scott M MacKenzie, Katherine Nichol, Jonathan R Seckl, Robert Fraser, John M C Connell and Eleanor Davies

Using a highly sensitive quantitative RT-PCR method for the measurement of CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) mRNAs, we previously demonstrated that CYP11B2 expression in the central nervous system (CNS) is subject to regulation by dietary sodium. We have now quantified the expression of these genes in the CNS of male Wistar Kyoto (WKY) rats in response to systemic ACTH infusion, dexamethasone infusion, and to adrenalectomy. CYP11B1 and CYP11B2 mRNA levels were measured in total RNA isolated from the adrenal gland and discrete brain regions using real-time quantitative RT-PCR. ACTH infusion (40 ng/day for 7 days, N=8) significantly increased CYP11B1 mRNA in the adrenal gland, hypothalamus, and cerebral cortex compared with animals infused with vehicle only. ACTH infusion decreased adrenal CYP11B2 expression but increased expression in all of the CNS regions except the cortex. Dexamethasone (10 μg/day for 7 days, N=8) reduced adrenal CYP11B1 mRNA compared with control animals but had no significant effect on either gene's expression in the CNS. Adrenalectomy (N=6 per group) significantly increased CYP11B1 expression in the hippocampus and hypothalamus and raised CYP11B2 expression in the cerebellum relative to sham-operated animals. This study confirms the transcription of CYP11B1 and CYP11B2 throughout the CNS and demonstrates that gene transcription is subject to differential regulation by ACTH and circulating corticosteroid levels.