Search Results
You are looking at 1 - 1 of 1 items for
- Author: Kalman Kovacs x
- Refine by access: Content accessible to me x
Search for other papers by Andrés Quintanar-Stephano in
Google Scholar
PubMed
Search for other papers by Roberto Chavira-Ramírez in
Google Scholar
PubMed
Search for other papers by Kalman Kovacs in
Google Scholar
PubMed
Search for other papers by Istvan Berczi in
Google Scholar
PubMed
Acute experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system, mediated by T lymphocytes. Immunization of Lewis rats with myelin antigens suspended in complete Freund’s adjuvant induces EAE. In a previous study on rats we have found that neurointermediate pituitary lobectomy (NIL) decreased both the humoral and cell-mediated immune responses. Here we investigated the effect of NIL on the incidence and severity of EAE and on the function of the hypothalamic-pituitary-adrenal axis in Lewis rats. NIL, hypophysectomized (Hypox) and sham-operated (Sham) rats were immunized s.c. with guinea-pig brain extract suspended in complete Freund’s adjuvant. Untreated rats were used as controls. Water intake, body weight gain, clinical and histopathologic incidence and severity of EAE were evaluated in the operated groups. On killing, plasma adrenocorticotropin and corticosterone levels were measured and adrenals, thymuses and spleens were weighed. Histopathologic lesions were counted in the brain and spinal cord. Water intake and body weight gain were significantly decreased in Sham and Hypox animals with EAE whereas higher intakes persisted in the NIL group. Plasma levels of adrenocorticotropin were within the normal range whereas corticosterone levels increased in Sham and occasionally in NIL animals. Thymus weights were decreased in NIL and Hypox groups. The clinical and histopathologic incidence and severity of EAE were significantly decreased in NIL animals as compared with Sham and Hypox rats. We concluded that NIL affects the cell-mediated immune response and plays a role in the development and progression of EAE in the Lewis rat.