Search Results
You are looking at 1 - 6 of 6 items for
- Author: L Morgan x
- Refine by access: Content accessible to me x
Search for other papers by DC Ribeiro in
Google Scholar
PubMed
Search for other papers by SM Hampton in
Google Scholar
PubMed
Search for other papers by L Morgan in
Google Scholar
PubMed
Search for other papers by S Deacon in
Google Scholar
PubMed
Search for other papers by J Arendt in
Google Scholar
PubMed
The circadian rhythms of most night shift workers do not adapt fully to the imposed behavioural schedule, and this factor is considered to be responsible for many of the reported health problems. One way in which such disturbances might be mediated is through inappropriate hormonal and metabolic responses to meals, on the night shift. Twelve healthy subjects (four males and eight females) were studied on three occasions at the same clock time (1330 h), but at different body clock times, after consuming test meals, first in their normal environment, secondly after a forced 9 h phase advance (body clock time approximately 2230 h) and then again 2 days later in the normal environment. They were given a low-fat pre-meal at 0800 h, then a test meal at 1330 h with blood sampling for the following 9 h. Parameters measured included plasma glucose, non-esterified fatty acids (NEFAs), triacylglycerol (TAG), insulin, C-peptide, proinsulin and glucose-dependent insulinotropic polypeptide, and urinary 6-sulphatoxymelatonin. In contrast with a previous study with a high-fat pre-meal, postprandial glucose and insulin responses were not affected by the phase shift. However, basal plasma NEFAs were lower immediately after the phase shift (P < 0.05). Incremental (difference from basal) TAG responses were significantly higher (P < 0.05) immediately after the phase shift compared with before. Two-day post-phase shift responses showed partial reversion to baseline values. This study suggests that it takes at least 2 days to adapt to eating meals on a simulated night shift, and that the nutritional content of the pre-meals consumed can have a marked effect on postprandial responses during a simulated phase shift. Such findings may provide a partial explanation for the increased occurrence of cardiovascular disease reported in shift workers.
Search for other papers by Y Ma in
Google Scholar
PubMed
Search for other papers by L Chai in
Google Scholar
PubMed
Search for other papers by SC Cortez in
Google Scholar
PubMed
Search for other papers by EG Stopa in
Google Scholar
PubMed
Search for other papers by MM Steinhoff in
Google Scholar
PubMed
Search for other papers by D Ford in
Google Scholar
PubMed
Search for other papers by J Morgan in
Google Scholar
PubMed
Search for other papers by AL Maizel in
Google Scholar
PubMed
SALL1 was originally identified on the basis of its DNA sequence homology to the region-specific homeotic gene Sal, in Drosophila melanogaster, which acts as a downstream target of hedgehog/tumor growth factor-beta-like decapentaplegic signals. The SALL1 gene has been associated with the Townes-Brocks Syndrome (TBS), a disorder characterized by multiorgan dysgenesis including renal and genital malformations. In this study, SALL1 message production was evaluated in association with the tissue localization of the protein product of SALL1, p140. SALL1 protein expression was observed in various adult and fetal tissues which elaborate reproductive endocrine hormones. The p140 was localized in specific microanatomic sites of the pituitary, adrenal cortex and the placenta. In the human pituitary, SALL1 protein expression was limited to the adenohypophysis, where it colocalized to those cells producing GH and the gonadotropins, LH and FSH. SALL1 expression was also found in most of the fetal and adult adrenal cortex in addition to the trophoblastic cells of the placenta. This pattern of expression complements prior studies demonstrating p140 in testicular fetal Leydig cells, adult Leydig and Sertoli cells, and granulosa cells of the ovary. The SALL1 protein was also shown here to be highly expressed in trophoblast tumors, which overproduce sex hormones. The expression patterns of SALL1 at multiple levels of the reproductive endocrine axis and the phenotypic effects associated with TBS suggest that SALL1 may have an important role in the interaction of the pituitary-adrenal/gonadal axis during reproduction.
Department of Biosciences, Nottingham Trent University, Nottingham, UK
Search for other papers by Stuart A Morgan in
Google Scholar
PubMed
Search for other papers by Laura L Gathercole in
Google Scholar
PubMed
Search for other papers by Zaki K Hassan-Smith in
Google Scholar
PubMed
Search for other papers by Jeremy Tomlinson in
Google Scholar
PubMed
NEXUS, Discovery Way, University of Leeds, Leeds, UK
Search for other papers by Paul M Stewart in
Google Scholar
PubMed
Department of Biosciences, Nottingham Trent University, Nottingham, UK
Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
The aged phenotype shares several metabolic similarities with that of circulatory glucocorticoid excess (Cushing’s syndrome), including type 2 diabetes, obesity, hypertension, and myopathy. We hypothesise that local tissue generation of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts 11-dehydrocorticosterone to active corticosterone in rodents (corticosterone to cortisol in man), plays a role in driving age-related chronic disease. In this study, we have examined the impact of ageing on glucocorticoid metabolism, insulin tolerance, adiposity, muscle strength, and blood pressure in both wildtype (WT) and transgenic male mice with a global deletion of 11β-HSD1 (11β-HSD1−/−) following 4 months high-fat feeding. We found that high fat-fed 11β-HSD1−/− mice were protected from age-related glucose intolerance and hyperinsulinemia when compared to age/diet-matched WTs. By contrast, aged 11β-HSD1−/− mice were not protected from the onset of sarcopenia observed in the aged WTs. Young 11β-HSD1−/− mice were partially protected from diet-induced obesity; however, this partial protection was lost with age. Despite greater overall obesity, the aged 11β-HSD1−/− animals stored fat in more metabolically safer adipose depots as compared to the aged WTs. Serum analysis revealed both WT and 11β-HSD1−/− mice had an age-related increase in morning corticosterone. Surprisingly, 11β-HSD1 oxo-reductase activity in the liver and skeletal muscle was unchanged with age in WT mice and decreased in gonadal adipose tissue. These data suggest that deletion of 11β-HSD1 in high fat-fed, but not chow-fed, male mice protects from age-related insulin resistance and supports a metabolically favourable fat distribution.
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Stuart A Morgan in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Zaki K Hassan-Smith in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Craig L Doig in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Mark Sherlock in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
School of Medicine, Worsley Building, University of Leeds, Leeds, UK
Search for other papers by Paul M Stewart in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
The adverse metabolic effects of prescribed and endogenous glucocorticoid excess, ‘Cushing’s syndrome’, create a significant health burden. While skeletal muscle atrophy and resultant myopathy is a clinical feature, the molecular mechanisms underpinning these changes are not fully defined. We have characterized the impact of glucocorticoids upon key metabolic pathways and processes regulating muscle size and mass including: protein synthesis, protein degradation, and myoblast proliferation in both murine C2C12 and human primary myotube cultures. Furthermore, we have investigated the role of pre-receptor modulation of glucocorticoid availability by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in these processes. Corticosterone (CORT) decreased myotube area, decreased protein synthesis, and increased protein degradation in murine myotubes. This was supported by decreased mRNA expression of insulin-like growth factor (IGF1), decreased activating phosphorylation of mammalian target of rapamycin (mTOR), decreased phosphorylation of 4E binding protein 1 (4E-BP1), and increased mRNA expression of key atrophy markers including: atrogin-1, forkhead box O3a (FOXO3a), myostatin (MSTN), and muscle-ring finger protein-1 (MuRF1). These findings were endorsed in human primary myotubes, where cortisol also decreased protein synthesis and increased protein degradation. The effects of 11-dehydrocorticosterone (11DHC) (in murine myotubes) and cortisone (in human myotubes) on protein metabolism were indistinguishable from that of CORT/cortisol treatments. Selective 11β-HSD1 inhibition blocked the decrease in protein synthesis, increase in protein degradation, and reduction in myotube area induced by 11DHC/cortisone. Furthermore, CORT/cortisol, but not 11DHC/cortisone, decreased murine and human myoblast proliferative capacity. Glucocorticoids are potent regulators of skeletal muscle protein homeostasis and myoblast proliferation. Our data underscores the potential use of selective 11β-HSD1 inhibitors to ameliorate muscle-wasting effects associated with glucocorticoid excess.
Search for other papers by L Morgan in
Google Scholar
PubMed
Search for other papers by J Arendt in
Google Scholar
PubMed
Search for other papers by D Owens in
Google Scholar
PubMed
Search for other papers by S Folkard in
Google Scholar
PubMed
Search for other papers by S Hampton in
Google Scholar
PubMed
Search for other papers by S Deacon in
Google Scholar
PubMed
Search for other papers by J English in
Google Scholar
PubMed
Search for other papers by D Ribeiro in
Google Scholar
PubMed
Search for other papers by K Taylor in
Google Scholar
PubMed
This study was undertaken to determine whether the internal clock contributes to the hormone and metabolic responses following food, in an experiment designed to dissociate internal clock effects from other factors. Nine female subjects participated. They lived indoors for 31 days with normal time cues, including the natural light: darkness cycle. For 7 days they retired to bed from 0000 h to 0800 h. They then underwent a 26-h 'constant routine' (CR) starting at 0800 h, being seated awake in dim light with hourly 88 Kcal drinks. They then lived on an imposed 27-h day (18 h of wakefulness, 9 h allowed for sleep), for a total of 27 days. A second 26-h CR, starting at 2200 h, was completed. During each CR salivary melatonin and plasma glucose, triacylglycerol (TAG), non-essential fatty acids (NEFA), insulin, gastric inhibitory peptide (GIP) and glucagon-like peptide-1 (GLP-1) were measured hourly. Melatonin and body temperature data indicated no shift in the endogenous clock during the 27-h imposed schedule. Postprandial NEFA, GIP and GLP-1 showed no consistent effects. Glucose, TAG and insulin increased during the night in the first CR. There was a significant effect of both the endogenous clock and sleep for glucose and TAG, but not for insulin. These findings may be relevant to the known increased risk of cardiovascular disease amongst shift workers.
Search for other papers by Samuel Richard Heaselgrave in
Google Scholar
PubMed
Search for other papers by Silke Heising in
Google Scholar
PubMed
Search for other papers by Stuart Andrew Morgan in
Google Scholar
PubMed
Search for other papers by David M Cartwright in
Google Scholar
PubMed
Search for other papers by Michael S Sagmeister in
Google Scholar
PubMed
Search for other papers by Rowan Hardy in
Google Scholar
PubMed
Search for other papers by Craig L Doig in
Google Scholar
PubMed
Search for other papers by Nicholas Morton in
Google Scholar
PubMed
Search for other papers by Kostas Tsintzas in
Google Scholar
PubMed
Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
Systemic glucocorticoid excess causes several adverse metabolic conditions, most notably Cushing’s syndrome. These effects are amplified by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Here we determined the less well characterised effects of glucocorticoid excess, and the contribution of 11β-HSD1 amplification, on metabolic rate in mice. Male and female C57BL/6J (wild type, WT) and 11β-HSD1 knock out (11β-HSD1KO) mice were treated with high-dose corticosterone or a vehicle control for 3 weeks. Indirect calorimetry was conducted during the final week of treatment, with or without fasting, to determine the impact on metabolic rate. We found that corticosterone treatment elevated metabolic rate and promoted carbohydrate utilisation primarily in female WT mice, with effects more pronounced during the light phase. Corticosterone treatment also resulted in greater fat accumulation in female WT mice. Corticosterone induced hyperphagia was identified as a likely causal factor altering the respiratory exchange ratio (RER) but not energy expenditure (EE). Male and female 11β-HSD1KO mice were protected against these effects. We identify novel metabolic consequences of sustained glucocorticoid excess, identify a key mechanism of hyperphagia and demonstrate that 11β-HSD1 is required to manifest the full metabolic derangement.