Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Marie K Lagerquist x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Free access

Cecilia Engdahl, Caroline Jochems, Jan-Åke Gustafsson, Paul T van der Saag, Hans Carlsten, and Marie K Lagerquist

Raloxifene is a selective oestrogen receptor modulator with tissue-specific effects. The mechanisms behind the effects of raloxifene are partly unclear, and the aim of the present study was to investigate whether raloxifene can activate the classical oestrogen-signalling pathway in vivo in three known oestrogen-responsive organs, uterus (reproductive organ), bone (non-reproductive organ) and thymus (immune organ). For this purpose, we have used reporter mice with a luciferase gene under control of oestrogen-responsive elements (EREs), enabling detection of in vivo activation of gene transcription via the classical oestrogen pathway. Three-month-old ovariectomized ERE-luciferase mice were treated with the raloxifene analogue (LY117018), oestradiol (OE2) or vehicle for 3 weeks. Luciferase activation was measured in bone, uterus and thymus, and compared to bone parameters, and uterus and thymus weights. The raloxifene analogue affected bone mineral density (BMD) to the same extent as OE2, and both treatments resulted in increased luciferase activity in bone. As expected, OE2 treatment resulted in increased uterus weight and increased uterine luciferase activity, while the effect of LY117018 on uterus weight and luciferase activity was modest and significantly lower than the effect of OE2. LY117018 and OE2 treatment resulted in similar luciferase activation in thymus. However, only OE2 treatment resulted in thymic atrophy, while no effect on thymus weight was seen after LY117018 treatment. In summary, the raloxifene analogue LY117018 can activate the classical oestrogen pathway in bone, uterus and thymus in vivo, and this activation is associated with BMD and uterus weight, but not thymus weight.

Free access

Annica Andersson, Anna E Törnqvist, Sofia Moverare-Skrtic, Angelina I Bernardi, Helen H Farman, Pierre Chambon, Cecilia Engdahl, Marie K Lagerquist, Sara H Windahl, Hans Carlsten, Claes Ohlsson, and Ulrika Islander

Apart from the role of sex steroids in reproduction, sex steroids are also important regulators of the immune system. 17β-estradiol (E2) represses T and B cell development, but augments B cell function, possibly explaining the different nature of immune responses in men and women. Both E2 and selective estrogen receptors modulators (SERM) act via estrogen receptors (ER). Activating functions (AF)-1 and 2 of the ER bind to coregulators and thus influence target gene transcription and subsequent cellular response to ER activation. The importance of ERαAF-1 and AF-2 in the immunomodulatory effects of E2/SERM has previously not been reported. Thus, detailed studies of T and B lymphopoiesis were performed in ovariectomized E2-, lasofoxifene- or raloxifene-treated mice lacking either AF-1 or AF-2 domains of ERα, and their wild-type littermate controls. Immune cell phenotypes were analyzed with flow cytometry. All E2 and SERM-mediated inhibitory effects on thymus cellularity and thymic T cell development were clearly dependent on both ERαAFs. Interestingly, divergent roles of ERαAF-1 and ERαAF-2 in E2 and SERM-mediated modulation of bone marrow B lymphopoiesis were found. In contrast to E2, effects of lasofoxifene on early B cells did not require functional ERαAF-2, while ERαAF-1 was indispensable. Raloxifene reduced early B cells partly independent of both ERαAF-1 and ERαAF-2. Results from this study increase the understanding of the impact of ER modulation on the immune system, which can be useful in the clarification of the molecular actions of SERMs and in the development of new SERM.

Free access

Johan Svensson, Jon Kindblom, Ruijin Shao, Sofia Movérare-Skrtic, Marie K Lagerquist, Niklas Andersson, Klara Sjögren, Katrien Venken, Dirk Vanderschueren, John-Olov Jansson, Olle Isaksson, and Claes Ohlsson

Both IGF1 and androgens are major enhancers of prostate growth and are implicated in the development of prostate hyperplasia and cancer. The aim of the present study was to investigate whether liver-derived endocrine IGF1 modulates the androgenic response in prostate. Mice with adult, liver-specific inactivation of IGF1 (LI-IGF1−/− mice) displayed an ∼80% reduction in serum IGF1 levels associated with decreased prostate weight compared with control mice (anterior prostate lobe −19%, P<0.05; dorsolateral prostate (DLP) lobe −35%, P<0.01; ventral prostate (VP) lobe −47%, P<0.01). Reduced androgen receptor (Ar) mRNA and protein levels were observed in the VP lobe (−34% and −30% respectively, both P<0.05 versus control mice). Analysis of prostate morphology showed reductions in both the glandular and fibromuscular compartments of the VP and DLP lobes that were proportional to the reductions in the weights of these lobes. Immunohistochemistry revealed reduced intracellular AR immunoreactivity in the VP and DLP lobes. The non-aromatizable androgen dihydrotestosterone increased VP weight to a lesser extent in orchidectomized (ORX) LI-IGF1−/− mice than in ORX controls (−40%, P<0.05 versus control mice). In conclusion, deficiency of liver-derived IGF1 reduces both the glandular and fibromuscular compartments of the prostate, decreases AR expression in prostate, and reduces the stimulatory effect of androgens on VP weight. These findings may explain, at least in part, the well-known clinical association between serum IGF1 levels and conditions with abnormal prostate growth.

Open access

Claes Ohlsson, Petra Henning, Karin H Nilsson, Jianyao Wu, Karin L Gustafsson, Klara Sjögren, Anna Törnqvist, Antti Koskela, Fu-Ping Zhang, Marie K Lagerquist, Matti Poutanen, Juha Tuukkanen, Ulf H Lerner, and Sofia Movérare-Skrtic

Substantial progress has been made in the therapeutic reduction of vertebral fracture risk in patients with osteoporosis, but non-vertebral fracture risk has been improved only marginally. Human genetic studies demonstrate that the WNT16 locus is a major determinant of cortical bone thickness and non-vertebral fracture risk and mouse models with life-long Wnt16 inactivation revealed that WNT16 is a key regulator of cortical thickness. These studies, however, could not exclude that the effect of Wnt16 inactivation on cortical thickness might be caused by early developmental and/or growth effects. To determine the effect of WNT16 specifically on adult cortical bone homeostasis, Wnt16 was conditionally ablated in young adult and old mice through tamoxifen-inducible Cre-mediated recombination using CAG-Cre-ER; Wnt16 flox/flox (Cre-Wnt16 flox/flox) mice. First, 10-week-old Cre-Wnt16 flox/flox and Wnt16 flox/flox littermate control mice were treated with tamoxifen. Four weeks later, Wnt16 mRNA levels in cortical bone were reduced and cortical thickness in femur was decreased in Cre-Wnt16 flox/flox mice compared to Wnt16 flox/flox mice. Then, inactivation of Wnt16 in 47-week-old mice (evaluated four weeks later) resulted in a reduction of Wnt16 mRNA levels, cortical thickness and cortical bone strength with no effect on trabecular bone volume fraction. Mechanistic studies demonstrated that the reduced cortical bone thickness was caused by a combination of increased bone resorption and reduced periosteal bone formation. In conclusion, WNT16 is a crucial regulator of cortical bone thickness in young adult and old mice. We propose that new treatment strategies targeting the adult regulation of WNT16 might be useful to reduce fracture risk at cortical bone sites.

Open access

Karin L Gustafsson, Sofia Movérare-Skrtic, Helen H Farman, Cecilia Engdahl, Petra Henning, Karin H Nilsson, Julia M Scheffler, Edina Sehic, Ulrika Islander, Ellis Levin, Claes Ohlsson, and Marie K Lagerquist

Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To determine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mERα-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were absent in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in the skeleton are mERα-dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrating mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mERα signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manner. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.

Open access

Carmen Corciulo, Julia M Scheffler, Piotr Humeniuk, Alicia Del Carpio Pons, Alexandra Stubelius, Ula Von Mentzer, Christina Drevinge, Aidan Barrett, Sofia Wüstenhagen, Matti Poutanen, Claes Ohlsson, Marie K Lagerquist, and Ulrika Islander

Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.