Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Marie-Pierre Moisan x
  • Refine by access: Content accessible to me x
Clear All Modify Search
Nathalie Marissal-Arvy INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Nathalie Marissal-Arvy in
Google Scholar
PubMed
Close
,
Rachel Hamiani INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Rachel Hamiani in
Google Scholar
PubMed
Close
,
Emmanuel Richard INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Emmanuel Richard in
Google Scholar
PubMed
Close
,
Marie-Pierre Moisan INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Marie-Pierre Moisan in
Google Scholar
PubMed
Close
, and
Véronique Pallet INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Véronique Pallet in
Google Scholar
PubMed
Close

The aim of this study was to explore the involvement of retinoids in the hypoactivity and hyporeactivity to stress of the hypothalamic–pituitary–adrenal (HPA) axis in LOU/C rats. We measured the effects of vitamin A deficiency administered or not with retinoic acid (RA) on plasma corticosterone in standard conditions and in response to restraint stress and on hypothalamic and hippocampal expression of corticosteroid receptors, corticotropin-releasing hormone and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in LOU/C rats. Interestingly, under control conditions, we measured a higher plasma concentration of retinol in LOU/C than in Wistar rats, which could contribute to the lower basal activity of the HPA axis in LOU/C rats. Vitamin A deficiency induced an increased HPA axis activity in LOU/C rats, normalized by RA administration. Compared with LOU/C control rats, vitamin A-deficient rats showed a delayed and heightened corticosterone response to restraint stress. The expression of corticosteroid receptors was strongly decreased by vitamin A deficiency in the hippocampus, which could contribute to a less efficient feedback by corticosterone on HPA axis tone. The expression of 11β-HSD1 was increased by vitamin A deficiency in the hypothalamus (+62.5%) as in the hippocampus (+104.7%), which could lead to a higher production of corticosterone locally and contribute to alteration of the hippocampus. RA supplementation treatment restored corticosterone concentrations and 11β-HSD1 expression to control levels. The high vitamin A status of LOU/C rats could contribute to their low HPA axis activity/reactivity and to a protective effect against 11β-HSD1-mediated deleterious action on cognitive performances during ageing.

Free access
Gabriele E Mattos
Search for other papers by Gabriele E Mattos in
Google Scholar
PubMed
Close
,
Jan-Michael Heinzmann
Search for other papers by Jan-Michael Heinzmann in
Google Scholar
PubMed
Close
,
Stefanie Norkowski
Search for other papers by Stefanie Norkowski in
Google Scholar
PubMed
Close
,
Jean-Christophe Helbling Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany
Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany

Search for other papers by Jean-Christophe Helbling in
Google Scholar
PubMed
Close
,
Amandine M Minni Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany
Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany

Search for other papers by Amandine M Minni in
Google Scholar
PubMed
Close
,
Marie-Pierre Moisan Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany
Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany

Search for other papers by Marie-Pierre Moisan in
Google Scholar
PubMed
Close
, and
Chadi Touma
Search for other papers by Chadi Touma in
Google Scholar
PubMed
Close

Increasing evidence indicates an important role of steroid-binding proteins in endocrine functions, including hypothalamic–pituitary–adrenal (HPA) axis activity and regulation, as they influence bioavailability, local delivery, and cellular signal transduction of steroid hormones. In the plasma, glucocorticoids (GCs) are mainly bound to the corticosteroid-binding globulin (CBG) and to a lesser extend to albumin. Plasma CBG levels are therefore involved in the adaptive stress response, as they determine the concentration of free, biologically active GCs. In this study, we investigated whether male mice with a genetic predisposition for high-reactivity (HR), intermediate-reactivity (IR), or low-reactivity (LR) stress-induced corticosterone (CORT) secretion present different levels of free CORT and CORT-binding proteins, basally and in response to stressors of different intensity. Our results suggest a fine control interaction between plasma CBG expression and stress-induced CORT release. Although plasma CBG levels, and therefore CBG binding capacity, were higher in HR animals, CORT secretion overloaded the CBG buffering function in response to stressors, resulting in clearly higher free CORT levels in HR compared with IR and LR mice (HR>IR>LR), resembling the pattern of total CORT increase in all three lines. Both stressors, restraint or forced swimming, did not evoke fast CBG release from the liver into the bloodstream and therefore CBG binding capacity was not altered in our three mouse lines. Thus, we confirm CBG functions in maintaining a dynamic equilibrium between CBG-bound and unbound CORT, but could not verify its role in delaying the rise of plasma free CORT immediately after stress exposure.

Free access