Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Ping Liang x
  • User-accessible content x
Clear All Modify Search
Free access

Jun-Ping Wen, Chune Liu, Wen-Kai Bi, Ya-Ting Hu, Qingshi Chen, Huibing Huang, Ji-Xing Liang, Lian-Tao Li, Li-Xiang Lin, and Gang Chen

Adiponectin secreted from adipose tissues plays a role in the regulation of energy homeostasis, food intake, and reproduction in the hypothalamus. We have previously demonstrated that adiponectin significantly inhibited GNRH secretion from GT1-7 hypothalamic GNRH neuron cells. In this study, we further investigated the effect of adiponectin on hypothalamic KISS1 gene transcription, which is the upstream signal of GNRH. We found that globular adiponectin (gAd) or AICAR, an artificial AMPK activator, decreased KISS1 mRNA transcription and promoter activity. Conversely, inhibition of AMPK by Compound C or AMPKα1-SiRNA augmented KISS1 mRNA transcription and promoter activity. Additionally, gAd and AICAR decreased the translocation of specificity protein-1 (SP1) from cytoplasm to nucleus; however, Compound C and AMPKα1-siRNA played an inverse role. Our experiments in vivo demonstrated that the expression of Kiss1 mRNA was stimulated twofold in the Compound C-treated rats and decreased about 60–70% in gAd- or AICAR-treated rats compared with control group. The numbers of kisspeptin immunopositive neurons in the arcuate nucleus region of Sprague Dawley rats mimicked the same trend seen in Kiss1 mRNA levels in animal groups with different treatments. In conclusion, our results provide the first evidence that adiponectin reduces Kiss1 gene transcription in GT1-7 cells through activation of AMPK and subsequently decreased translocation of SP1.

Restricted access

Weijuan Shao, Wenjuan Liu, Ping Liang, Zhuolun Song, Odisho Israel, Gerald J Prud’homme, Qinghua Wang, and Tianru Jin

Gamma-aminobutyric acid (GABA) administration attenuates streptozotocin (STZ)-induced diabetes in rodent models with unclear underlying mechanisms. We found that GABA and Sitagliptin possess additive effect on pancreatic β-cells, which prompted us to ask the existence of common or unique targets of GLP-1 and GABA in pancreatic β-cells. Effect of GABA on expression of thioredoxin-interacting protein (TxNIP) was assessed in the INS-1 832/13 (INS-1) cell line, WT and GLP-1R–/– mouse islets. GABA was also orally administrated in STZ-challenged WT or GLP-1R–/– mice, followed by immunohistochemistry assessment of pancreatic islets. Effect of GABA on Wnt pathway effector β-catenin (β-cat) was examined in INS-1 cells, WT and GLP-1R–/– islets. We found that GABA shares a common feature with GLP-1 on inhibiting TxNIP, while this function was attenuated in GLP-1R–/– islets. In WT mice with STZ challenge, GABA alleviated several ‘diabetic syndromes’, associated with increased β-cell mass. These features were virtually absent in GLP-1R–/– mice. Knockdown TxNIP in INS-1 cells increased GLP-1R, Pdx1, Nkx6.1 and Mafa levels, associated with increased responses to GABA or GLP-1 on stimulating insulin secretion. Cleaved caspase-3 level can be induced by high-glucose, dexamethasone, or STZ in INS-1 cell, while GABA treatment blocked the induction. Finally, GABA treatment increased cellular cAMP level and β-cat S675 phosphorylation in WT but not GLP-1R–/– islets. We, hence, identified TxNIP as a common target of GABA and GLP-1 and suggest that, upon STZ or other stress challenge, the GLP-1R-cAMP-β-cat signaling cascade also mediates beneficial effects of GABA in pancreatic β-cell, involving TxNIP reduction.