Search Results

You are looking at 1 - 2 of 2 items for

  • Author: V. Marks x
  • User-accessible content x
Clear All Modify Search
Free access

Manish V Sheth, Connie J Mark, and Kathleen M Eyster

This study was undertaken to test the hypothesis that the reduction in protein phosphatase activity that had been observed at mid-pregnancy in the rat corpus luteum (CL) was due to a decrease in expression of one of the catalytic subunits or an increase in one of the B regulatory subunits of the type 2A protein phosphatase (PP2A). Ovaries were collected from rats on days (d) 1, 3, 7, 14, 20, and 21 of pregnancy, and on day 21 after progesterone treatment on day 20 (n = 6). Real-time RT-PCR was used to analyze the expression of the α and β isoforms of the catalytic subunit, the structural A subunit, and three B regulatory subunits of PP2A, as well as the catalytic subunit of PP1. Expression of the α and β catalytic subunits of PP2A was progesterone responsive. Expression of the PP1 catalytic subunit correlated with the previously reported protein phosphatase activity, but PP2A subunits did not. The data suggest that the decreased protein phosphatase activity at mid-pregnancy was due to a decline in expression of the catalytic subunits of PP1 rather than changes in expression of PP2A subunits.

Free access

Srinivasulu Chigurupati, Tae Gen Son, Dong-Hoon Hyun, Justin D Lathia, Mohamed R Mughal, Jason Savell, Shuan C Li, G P C Nagaraju, Sic L Chan, Thiruma V Arumugam, and Mark P Mattson

Regular exercise can counteract the adverse effects of aging on the musculoskeletal and cardiovascular systems. In males, the normal aging process is associated with reductions in testosterone production and impaired spermatogenesis, but the underlying mechanisms and their potential modification by exercise are unknown. Here, we report that lifelong regular exercise (running) protects the testes against the adverse effects of advancing age, and that this effect of running is associated with decreased amounts of oxidative damage to proteins, lipids, and DNA in spermatogenic and Leydig cells. Six-month-old male mice were divided into a sedentary group and a group that ran an average of 1.75 km/day, until the mice reached the age of 20 months. Seminiferous tubules of runners exhibited a full complement of cells at different stages of the spermatogenic process and a clear central lumen with large numbers of spermatozoa, in contrast to sedentary mice that exhibited disorganized spermatogenic cells and lacked spermatocytes in a central lumen. Levels of protein carbonyls, nitrotyrosine, lipid peroxidation products, and oxidatively modified DNA were significantly greater in spermatogenic and Leydig cells of sedentary mice compared with runners. These findings suggest that lifelong regular exercise suppresses aging of testes by a mechanism that involves reduced oxidative damage to spermatogenic and Leydig cells.