Search Results

You are looking at 1 - 1 of 1 items for

  • Author: T Ohkubo x
  • Refine by access: Content accessible to me x
Clear All Modify Search
N Nakao
Search for other papers by N Nakao in
Google Scholar
PubMed
Close
,
Y Higashimoto
Search for other papers by Y Higashimoto in
Google Scholar
PubMed
Close
,
T Ohkubo
Search for other papers by T Ohkubo in
Google Scholar
PubMed
Close
,
H Yoshizato
Search for other papers by H Yoshizato in
Google Scholar
PubMed
Close
,
N Nakai
Search for other papers by N Nakai in
Google Scholar
PubMed
Close
,
K Nakashima
Search for other papers by K Nakashima in
Google Scholar
PubMed
Close
, and
M Tanaka
Search for other papers by M Tanaka in
Google Scholar
PubMed
Close

Growth hormone receptor (GHR) cDNA and gene of the Japanese flounder (Paralicthys olivaceus) were cloned and their molecular structures were characterized. The 641 amino acid sequence predicted from the cDNA sequence showed more than 75% overall sequence similarity with GHRs of other teleosts such as turbot and goldfish, and contained common structural features of vertebrate GHRs. The extracellular domain of flounder GHR had three pairs of cysteines and an FGEFS motif with a replacement E to D. The cytoplasmic domain contained two conserved motifs referred to as box 1 and box 2. The flounder GHR gene was cloned by PCR using primers designed from the sequence of the GHR cDNA. The GHR gene was composed of 10 exons. The sequence of exon 1 corresponded to the 5'-untranslated region of the cDNA, and exons 2-6 encoded most parts of the extracellular domain. The transmembrane domain was found in exon 7, and the intracellular domain was encoded in exons 8-10. Exon 10 also encoded the 3'-untranslated region. Comparison of the flounder GHR gene with the human GHR gene shows that the flounder gene contains no exons corresponding to exon 3 of the human GHR gene, and that the region corresponding to exon 10 in the human GHR gene is encoded by exons 9 and 10 in the flounder GHR gene. These findings indicate that the flounder GHR gene diverged from those of mammalian and avian GHR genes, especially in the organization of the exons encoding the cytoplasmic domain. In addition to the regular form of GHR mRNA, a 3'-truncated form lacking the region derived from exons 9 and 10 was detected as a minor species in the liver by RT-PCR and by RNase protection assay. RT-PCR analysis showed that both the regular and the 3'-truncated GHR mRNAs are expressed in a wide range of flounder tissues with the highest levels being found in the liver. The 5'-flanking region of the flounder GHR gene was cloned by inverse PCR, and three transcription start points were identified with similar frequency by RNase protection assay.

Free access