Search Results

You are looking at 1 - 10 of 679 items for

  • Abstract: Digestion x
  • Abstract: Thyroxine x
  • Abstract: Thyroglobulin x
  • Abstract: Thyroiditis x
  • Abstract: Thyrotoxicosis x
  • Abstract: Hypothyroidism x
  • Abstract: Hyperthyroidism x
  • Abstract: TSHR x
  • Abstract: Metabolism x
  • User-accessible content x
Clear All Modify Search
Free access

T Mokuno, K Uchimura, R Hayashi, N Hayakawa, M Makino, M Nagata, H Kakizawa, Y Sawai, M Kotake, N Oda, A Nakai, A Nagasaka and M Itoh

The deterioration of glucose metabolism frequently observed in hyperthyroidism may be due in part to increased gluconeogenesis in the liver and glucose efflux through hepatocyte plasma membranes. Glucose transporter 2 (GLUT 2), a facilitative glucose transporter localized to the liver and pancreas, may play a role in this distorted glucose metabolism. We examined changes in the levels of GLUT 2 in livers from rats with l-thyroxine-induced hyperthyroidism or methimazole-induced hypothyroidism by using Western blotting to detect GLUT 2. An oral glucose tolerance test revealed an oxyhyperglycemic curve (impaired glucose tolerance) in hyperthyroid rats (n=7) and a flattened curve in hypothyroid rats (n=7). GLUT 2 levels in hepatocyte plasma membranes were significantly increased in hyperthyroid rats and were not decreased in hypothyroid rats compared with euthyroid rats. The same results were obtained with a densitometric assay. These findings suggest that changes in the liver GLUT 2 concentration may contribute to abnormal glucose metabolism in thyroid disorders.

Free access

Beate Karges, Gerd Krause, Janos Homoki, Klaus-Michael Debatin, Nicolas de Roux and Wolfram Karges

Mutations of the human thyrotrophin receptor (TSH-R) are a cause of thyroid adenomas and hyperthyroidism. Here we study mechanisms of receptor activation in a genomic TSH-R variant V509A located in transmembrane helix (TMH) 3, which we identify in a family with congenital hyperthyroidism, multiple adenomas and follicular thyroid cancer. Using molecular modelling and dynamic simulation, we predicted the release of amino acid residue A593 (located opposite in domain TMH5) from a tight ‘knob-and-hole’ interaction with TMH3, physiologically constrained in the native receptor state by the bulky side chain of V509. To experimentally validate this concept, we generated mutant TSH-R expression constructs for functional in vitro studies. TSH-R mutant V509A showed a 2.8-fold increase in basal cAMP production, confirming constitutive TSH-R activation. The addition of a second site suppressor mutant A593V to TSH-R V509A resulted in the normalization of basal cAMP release, and the dose-responsiveness to TSH ligand was maintained. These data thus demonstrate that TSH-R V509A activation is caused by the release of TMH3–TMH5 interhelical constraints, while the native TSH-R conformation is re-stabilized by the introduction of a spacious valine residue at position 593. In conclusion, we delineate a novel mechanism of constitutive TSH-R activation, leading to thyroid hyperfunction and neoplasia.

Open access

Shuang-Xia Zhao, Shanli Tsui, Anthony Cheung, Raymond S Douglas, Terry J Smith and J Paul Banga

The TSH receptor (TSHR) is the critical target for antibody production in Graves' disease (GD). Insulin-like growth factor 1 receptor (IGF1R) has been proposed as a second autoantigen in complications of GD such as orbitopathy. We attempted to induce orbital tissue remodeling in mice undergoing immunizations with plasmids encoding TSHR and IGF1R delivered by in vivo skeletal muscle electroporation, a procedure known to give a sustained, long-term antibody response. Female BALB/c mice were challenged with TSHR A-subunit or IGF1Rα subunit plasmid by injection and electroporation. Mice challenged with TSHR A-subunit plasmid resulted in high frequency (75%) of hyperthyroidism and thyroid-stimulating antibodies. But strikingly, immunization with TSHR A-subunit plasmid also elicited antibody to IGF1Rα subunit. Mice challenged in the same manner with IGF1Rα subunit plasmid produced strong antibody responses to IGF1R, but did not undergo any changes in phenotype. Simultaneous challenge by double antigen immunization with the two plasmids in distant anatomical sites reduced the incidence of hyperthyroidism, potentially as a consequence of antigenic competition. Thyroid glands from the TSHR A-subunit plasmid-challenged group were enlarged with patchy microscopic infiltrates. Histological analysis of the orbital tissues demonstrated moderate connective tissue fibrosis and deposition of Masson's trichrome staining material. Our findings imply that immunization with TSHR A-subunit plasmid leads to generation of IGF1R antibodies, which together with thyroid-stimulating antibodies may precipitate remodeling of orbital tissue, raising our understanding of its close association with GD.

Free access

Y Wang, L P Wu, J Fu, H J Lv, X Y Guan, L Xu, P Chen, C Q Gao, P Hou, M J Ji and B Y Shi

Graves' disease (GD) is a common organ-specific autoimmune disease with the prevalence between 0.5 and 2% in women. Several lines of evidence indicate that the shed A-subunit rather than the full-length thyrotropin receptor (TSHR) is the autoantigen that triggers autoimmunity and leads to hyperthyroidism. We have for the first time induced GD in female rhesus monkeys, which exhibit greater similarity to patients with GD than previous rodent models. After final immunization, the monkeys injected with adenovirus expressing the A-subunit of TSHR (A-sub-Ad) showed some characteristics of GD. When compared with controls, all the test monkeys had significantly higher TSHR antibody levels, half of them had increased total thyroxine (T4) and free T4, and 50% developed goiter. To better understand the underlying mechanisms, quantitative studies on subpopulations of CD4+T helper cells were carried out. The data indicated that this GD model involved a mixed Th1 and Th2 response. Declined Treg proportions and increased Th17:Treg ratio are also observed. Our rhesus monkey model successfully mimicked GD in humans in many aspects. It would be a useful tool for furthering our understanding of the pathogenesis of GD and would potentially shorten the distance toward the prevention and treatment of this disease in human.

Free access

Feng Ye, Bingyin Shi, Xiaoyan Wu, Peng Hou, Lei Gao, Xiaodan Ma, Li Xu and Liping Wu

CD40 plays an important role in the pathogenesis of Graves' disease (GD). Inhibition of CD40 expression may be a promising treatment for GD. In this study, we used an animal model to investigate whether lentivirus expressing siRNA for CD40 (LV-CD40-siRNA) could be useful for the therapy of GD. BALB/c mice were injected with PBS alone (PBS group), negative lentivirus (control siRNA group), or LV-CD40-siRNA (CD40 siRNA group), 3 days before being treated with adenovirus expressing human TSHR A subunit (Ad-TSHR289) three times at 3-week intervals to induce GD model. Sera thyroxine (T4) levels were assayed by RIA. The expression of CD40 was detected at the mRNA level by real-time PCR and protein level by flow cytometry. The expression of CD40, CD80, and CD86 was significantly decreased in the CD40 siRNA group (P<0.05), while FOXP3 expression was increased compared to the control siRNA group (P=0.05). Mean T4 levels were decreased 14% in the CD40 siRNA group compared to the control siRNA group. The rate of disease induction was similar among the three groups injected with Ad-TSHR289. LV-CD40-siRNA is a useful tool to inhibit the expression of CD40 in vivo, but it cannot decrease the incidence of hyperthyroidism in a limited period of time.

Free access

Ikuko Ueki, Norio Abiru, Kentaro Kawagoe and Yuji Nagayama

Experimental Graves'-like hyperthyroidism can be induced in susceptible mouse strains by repetitive immunizations with recombinant adenovirus expressing the human full-length TSH receptor (TSHR) or its A-subunit. Previous studies have shown that splenocytes from immunized mice produce interferon (IFN)-γ and interleukin (IL) 10 in response to antigen stimulation in an in vitro T cell recall assay. Although IFN-γ is now well known to be essential for disease induction, the role(s) played by IL10 are unknown. Therefore, this study was conducted to clarify the significance of endogenous IL10 in the pathogenesis of experimental Graves' disease using IL10 deficient (IL10−/−) mice. Our results show that T cell response was augmented when estimated by their antigen-specific secretion of the key cytokine IFN-γ, but B cell function was dampened, that is, anti-TSHR antibody titers were decreased in IL10−/− mice, resulting in a lower incidence of Graves' hyperthyroidism (54% in IL10+/+ vs 25% in IL10−/−). Thus, in addition to IFN-γ, these data clarified the role of IL10 for optimizing anti-TSHR antibody induction and eliciting Graves' hyperthyroidism in our Graves' mouse model.

Free access

SM van der Heide, BJ Joosten, ME Everts and PH Klaren

We have investigated the hypothesis that uridine 5'-diphosphate (UDP)-glucuronyltransferases (UGTs) and beta-glucuronidase are jointly involved in a mechanism for the storage and mobilization of iodothyronine metabolites in liver, kidney, heart and brain. Specifically, we predicted UGT activities to decrease and increase respectively, and beta-glucuronidase activity to increase and decrease respectively in hypo- and hyperthyroidism. To this end we have studied the effects of thyroid status on the activities of different enzymes involved in thyroid hormone metabolism in liver, kidney, heart and brain from adult rats with experimentally induced hypo- and hyperthyroidism. We used whole organ homogenates to determine the specific enzyme activities of phenol- and androsteron-UGT, beta-glucuronidase, as well as iodothyronine deiodinase types I and II. Deiodinase type I activities in liver and kidney were decreased in hypothyroid animals and, in liver only, increased in hyperthyroidism. Deiodinase type II activity was increased in hyperthyroid rat kidney only. Interestingly, in the heart, deiodinase type I-specific activity was increased fourfold, although the increase was not statistically significant. Cardiac deiodinase type I activity was detectable but not sensitive to thyroid status. Hepatic phenol-UGT as well as androsteron-UGT activities were decreased in hypothyroid rats, with specific androsteron-UGT activities two to three orders of magnitude lower than phenol-UGT activities. Both UGT isozymes were well above detection limits in heart, but appeared to be insensitive to thyroid status. In contrast, cardiac beta-glucuronidase activity decreased in hypothyroid tissue, whereas the activity of this enzyme in the other organs investigated did not change significantly.In summary, cardiac beta-glucuronidase, albeit in low levels, and hepatic phenol-UGT activities were responsive only to experimental hypothyroidism. Although a high basal activity of the pleiotropic beta-glucuronidase masking subtle activity changes in response to thyroid status cannot be ruled out, we conclude that hepatic, renal and cardiac UGT and beta-glucuronidase activities are not regulated reciprocally with thyroid status.

Free access

Alicia J Klecha, Ana M Genaro, Gabriela Gorelik, María Laura Barreiro Arcos, Dafne Magalí Silberman, Mariano Schuman, Silvia I Garcia, Carlos Pirola and Graciela A Cremaschi

Thyroid hormones play critical roles in differentiation, growth and metabolism, but their participation in immune system regulation has not been completely elucidated. Modulation of in vivo thyroid status was used to carry out an integrative analysis of the role of the hypothalamus–pituitary–thyroid (HPT) axis in T and B lymphocyte activity. The participation of the protein kinase C (PKC) signaling pathway and the release of some cytokines upon antigenic stimulation were analyzed. Lymphocytes from hyperthyroid mice displayed higher T-and B-cell mitogen-induced proliferation, and those from hypothyroid mice displayed lower T- and B-cell mitogen-induced proliferation, compared with euthyroid animals. Reversion of hypothyroid state by triiodothyronine (T3) administration recovered the proliferative responses. No differences were found in lymphoid subset balance. Both total PKC content and mitogen-induced PKC translocation were higher in T and B cells from hyperthyroid mice, and lower in cells from hypothyroid mice, compared with controls. Levels of thyroid-stimulating (TSH) and TSH-releasing (TRH) hormones were not directly related to lymphocyte proliferative responses. After immunization with sheep red blood cells (SRBCs) and re-stimulation, in vitro spleen cells from hyper- or hypothyroid mice showed, respectively, increased or decreased production of interleukin (IL)-2 and interferon (IFN)-γ cytokines. Additionally, an increase in IL-6 and IFN-γ levels was found in hyperthyroid cells after in vivo injection and in vitro re-stimulation with lipopolysaccharide (LPS).

Our results show for the first time a thyroid hormone-mediated regulation of PKC content and of cytokine production in lymphocytes; this regulation could be involved in the altered responsiveness to mitogen-induced proliferation of T and B cells. The results also confirm the important role that these hormones play in regulating lymphocyte reactivity.

Free access

Guillermo Vazquez-Anaya, Bridget Martinez, José G Soñanez-Organis, Daisuke Nakano, Akira Nishiyama and Rudy M Ortiz

Both hypothyroidism and hyperthyroidism are associated with glucose intolerance, calling into question the contribution of thyroid hormones (TH) on glucose regulation. TH analogues and derivatives may be effective treatment options for glucose intolerance and insulin resistance (IR), but their potential glucoregulatory effects during conditions of impaired metabolism are not well described. To assess the effects of thyroxine (T4) on glucose intolerance in a model of insulin resistance, an oral glucose tolerance test (oGTT) was performed on three groups of rats (n = 8): (1) lean, Long Evans Tokushima Otsuka (LETO), (2) obese, Otsuka Long Evans Tokushima Fatty (OLETF) and (3) OLETF + T4 (8.0 µg/100 g BM/day × 5 weeks). T4 attenuated glucose intolerance by 15% and decreased IR index (IRI) by 34% in T4-treated OLETF compared to untreated OLETF despite a 31% decrease in muscle Glut4 mRNA expression. T4 increased the mRNA expressions of muscle monocarboxylate transporter 10 (Mct10), deiodinase type 2 (Di2), sirtuin 1 (Sirt1) and uncoupling protein 2 (Ucp2) by 1.8-, 2.2-, 2.7- and 1.4-fold, respectively, compared to OLETF. Activation of AMP-activated protein kinase (AMPK) and insulin receptor were not significantly altered suggesting that the improvements in glucose intolerance and IR were independent of enhanced insulin-mediated signaling. The results suggest that T4 treatment increased the influx of T4 in skeletal muscle and, with an increase of DI2, increased the availability of the biologically active T3 to upregulate key factors such SIRT1 and UCP2 involved in cellular metabolism and glucose homeostasis.

Free access

ST Chen, HY Shieh, JD Lin, KS Chang and KH Lin

To correlate the differentiation phenotype of two human thyroid cancer cell lines with their expression of various molecular markers, we analyzed the mRNA levels of four thyroid-specific genes, including thyrotropin receptor (TSHR), thyroglobulin (Tg), thyroid transcription factor-1 (TTF-1), and paired-box containing transcription factor-8 (PAX-8) genes. The results showed a differentiation-status-related pattern in which a well-differentiated cell line (WRO) expressed all the four genes, in contrast to an anaplastic cell line (ARO) that expressed TTF-1 and reduced levels of TSHR, but no Tg or PAX-8 genes. Furthermore, to verify the finding of concomitant loss of beta subtype thyroid hormone receptor (TRbeta) and TSHR gene expression in neoplastic thyroid tumors (Bronnegard et al. 1994), we examined the expression levels of TRbeta1 gene in these cell lines. Whereas the WRO cells produced an abundant amount of TRbeta1 protein detectable by immunoprecipitation, the ARO cells produced none. This new observation prompted us to investigate whether overexpression of TRbeta1 protein in ARO cells might produce changes in the differentiation phenotypes. We found that the level of expression of the TSHR gene and the proliferative index of ARO cells were significantly upregulated in the cells stably transfected with wild-type TRbeta1. These findings suggest that TRbeta1 protein overexpression can affect the differentiation phenotypes and induce more efficient cell proliferation of the anaplastic ARO cells.