Search Results
Search for other papers by Isis Gabrielli Barbieri de Oliveira in
Google Scholar
PubMed
Search for other papers by Marcos Divino Ferreira Junior in
Google Scholar
PubMed
Search for other papers by Paulo Ricardo Lopes in
Google Scholar
PubMed
Search for other papers by Dhiogenes Balsanufo Taveira Campos in
Google Scholar
PubMed
Search for other papers by Marcos Luiz Ferreira-Neto in
Google Scholar
PubMed
Search for other papers by Eduardo Henrique Rosa Santos in
Google Scholar
PubMed
Search for other papers by Paulo Cezar de Freitas Mathias in
Google Scholar
PubMed
Search for other papers by Flávio Andrade Francisco in
Google Scholar
PubMed
Search for other papers by Bruna Del Vechio Koike in
Google Scholar
PubMed
Search for other papers by Carlos Henrique de Castro in
Google Scholar
PubMed
Search for other papers by André Henrique Freiria-Oliveira in
Google Scholar
PubMed
Search for other papers by Gustavo Rodrigues Pedrino in
Google Scholar
PubMed
Search for other papers by Rodrigo Mello Gomes in
Google Scholar
PubMed
Search for other papers by Daniel Alves Rosa in
Google Scholar
PubMed
relate to increased adiposity and the development of other parameters of metabolic syndrome ( Báez-Ruiz et al. 2017 ). Although many evidence suggests that the desynchronization of circadian rhythm increases the risk of cardiometabolic disorders
Search for other papers by S A Cavigelli in
Google Scholar
PubMed
Search for other papers by S L Monfort in
Google Scholar
PubMed
Search for other papers by T K Whitney in
Google Scholar
PubMed
Search for other papers by Y S Mechref in
Google Scholar
PubMed
Search for other papers by M Novotny in
Google Scholar
PubMed
Search for other papers by M K McClintock in
Google Scholar
PubMed
several pellets every 1–2 h ( Kishibayashi et al. 1995 ), according the higher temporal resolution needed to detect circadian rhythms and perturbations by a stressor. Fecal corticoid measures are also effective for documenting changes in glucocorticoid
Search for other papers by Jennifer A Evans in
Google Scholar
PubMed
various body clocks with one another and with the local time zone. Classic work demonstrates that the SCN is necessary for maintaining circadian rhythms in numerous processes, including sleep, feeding, drinking, melatonin production, and reproductive
Search for other papers by Sebastian R Vanin in
Google Scholar
PubMed
Search for other papers by Kendrick Lee in
Google Scholar
PubMed
Search for other papers by Mina Nashed in
Google Scholar
PubMed
Search for other papers by Brennan Tse in
Google Scholar
PubMed
Search for other papers by Mohammed Sarikahya in
Google Scholar
PubMed
Search for other papers by Sukham Brar in
Google Scholar
PubMed
Search for other papers by Gregg Tomy in
Google Scholar
PubMed
Search for other papers by Amica-Mariae Lucas in
Google Scholar
PubMed
Search for other papers by Thane Tomy in
Google Scholar
PubMed
Search for other papers by Steven R Laviolette in
Google Scholar
PubMed
Search for other papers by Edith J Arany in
Google Scholar
PubMed
The Lawson Health Research Institute and the Children's Health Research Institute, London, Ontario, Canada
Search for other papers by Daniel B Hardy in
Google Scholar
PubMed
terms are shown at maximum. Each bubble is the -log 10 ( P -value) for the respective term and is sized according to the gene ratio. Across the GO:BP, GO:CC, and KEGG enriched terms, we observed common terms related to circadian rhythm
Search for other papers by Muneki Ikeda in
Google Scholar
PubMed
Department of Biophysics and Life Sciences, Bioinformatics Project of Japan Science and Technology Agency, Laboratory of Exercise Biochemistry and Neuroendocrinology, Department of Urology, Graduate School of Arts and Sciences, University of Tokyo, 3‐8‐1 Komaba, Meguro‐ku, Tokyo 152-8902, Japan
Search for other papers by Yasushi Hojo in
Google Scholar
PubMed
Search for other papers by Yoshimasa Komatsuzaki in
Google Scholar
PubMed
Department of Biophysics and Life Sciences, Bioinformatics Project of Japan Science and Technology Agency, Laboratory of Exercise Biochemistry and Neuroendocrinology, Department of Urology, Graduate School of Arts and Sciences, University of Tokyo, 3‐8‐1 Komaba, Meguro‐ku, Tokyo 152-8902, Japan
Search for other papers by Masahiro Okamoto in
Google Scholar
PubMed
Search for other papers by Asami Kato in
Google Scholar
PubMed
Search for other papers by Taishi Takeda in
Google Scholar
PubMed
Department of Biophysics and Life Sciences, Bioinformatics Project of Japan Science and Technology Agency, Laboratory of Exercise Biochemistry and Neuroendocrinology, Department of Urology, Graduate School of Arts and Sciences, University of Tokyo, 3‐8‐1 Komaba, Meguro‐ku, Tokyo 152-8902, Japan
Department of Biophysics and Life Sciences, Bioinformatics Project of Japan Science and Technology Agency, Laboratory of Exercise Biochemistry and Neuroendocrinology, Department of Urology, Graduate School of Arts and Sciences, University of Tokyo, 3‐8‐1 Komaba, Meguro‐ku, Tokyo 152-8902, Japan
Search for other papers by Suguru Kawato in
Google Scholar
PubMed
), the CORT level changes in both the plasma and brain along the circadian rhythm ( Migeon et al . 1956 , Moore & Eichler 1972 , Qian et al . 2012 ). Qian et al . showed the high synchronicity of CORT oscillation between the blood and hippocampus by
Search for other papers by J Fahrenkrug in
Google Scholar
PubMed
Search for other papers by B Georg in
Google Scholar
PubMed
Search for other papers by J Hannibal in
Google Scholar
PubMed
Search for other papers by H L Jørgensen in
Google Scholar
PubMed
thyroid hormones compared to control rats, and based on the mean concentrations, it amounted to 7.7-fold for T4, 23-fold for free T4 and two-fold for T3, respectively ( Fig. 4D, E and F ). Furthermore, daily circadian rhythms in the thyroid hormones
Laboratory Animal Center, Nantong University, Nantong, Jiangsu, China
Search for other papers by Qinghua Wang in
Google Scholar
PubMed
Search for other papers by Jing Tang in
Google Scholar
PubMed
School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, China
Search for other papers by Shujun Jiang in
Google Scholar
PubMed
Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
Search for other papers by Zan Huang in
Google Scholar
PubMed
Search for other papers by Anying Song in
Google Scholar
PubMed
Search for other papers by Siyuan Hou in
Google Scholar
PubMed
Search for other papers by Xiang Gao in
Google Scholar
PubMed
Search for other papers by Hai-Bin Ruan in
Google Scholar
PubMed
), ITA and XIAP ( Jordan et al. 2001 ), UNC5H1 ( Williams et al. 2003 ), ROR2 ( Matsuda et al. 2003 ) and RORα ( Wang et al. 2010 ) to regulate neural development, cell apoptosis and proliferation and circadian rhythm. We and others have showed
Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
Search for other papers by Miho Sato in
Google Scholar
PubMed
Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
Search for other papers by Keiko Nakahara in
Google Scholar
PubMed
Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
Search for other papers by Mikiya Miyazato in
Google Scholar
PubMed
Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
Search for other papers by Kenji Kangawa in
Google Scholar
PubMed
Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
Search for other papers by Noboru Murakami in
Google Scholar
PubMed
expression is regulated by circadian rhythm, starvation, CCK, gastrin, and other factors, possibly via extracellular fluid or satellite cells. CCK and gastrin receptors are expressed in vagal afferent neurons, implying that the regulation of GHS-R gene
Search for other papers by Christophe Breton in
Google Scholar
PubMed
. In addition, fasted adult offspring from FR70 dams during gestation displayed no marked reduced α-MSH-immunoreactive fibre projection intensity in the PVN ( Breton et al . 2009 ). Maternal reduced nutrition modifies circadian rhythms in the offspring
Search for other papers by SW Lockley in
Google Scholar
PubMed
Search for other papers by DJ Skene in
Google Scholar
PubMed
Search for other papers by K James in
Google Scholar
PubMed
Search for other papers by K Thapan in
Google Scholar
PubMed
Search for other papers by J Wright in
Google Scholar
PubMed
Search for other papers by J Arendt in
Google Scholar
PubMed
Although melatonin treatment has been shown to phase shift human circadian rhythms, it still remains ambiguous as to whether exogenous melatonin can entrain a free-running circadian system. We have studied seven blind male subjects with no light perception who exhibited free-running urinary 6-sulphatoxymelatonin (aMT6s) and cortisol rhythms. In a single-blind design, five subjects received placebo or 5 mg melatonin p.o. daily at 2100 h for a full circadian cycle (35-71 days). The remaining two subjects also received melatonin (35-62 days) but not placebo. Urinary aMT6s and cortisol (n=7) and core body temperature (n=1) were used as phase markers to assess the effects of melatonin on the During melatonin treatment, four of the seven free-running subjects exhibited a shortening of their cortisol circadian period (tau). Three of these had taus which were statistically indistinguishable from entrainment. In contrast, the remaining three subjects continued to free-run during the melatonin treatment at a similar tau as prior to and following treatment. The efficacy of melatonin to entrain the free-running cortisol rhythms appeared to be dependent on the circadian phase at which the melatonin treatment commenced. These results show for the first time that daily melatonin administration can entrain free-running circadian rhythms in some blind subjects assessed using reliable physiological markers of the circadian system.