Search Results

You are looking at 11 - 20 of 205 items for :

  • User-accessible content x
Clear All
Free access

E Houdeau, A Lévy, and S Mhaouty-Kodja

role in the regulation of uterine contractility. Indeed, contractant factors like oxytocin (OT), prostaglandins or norepinephrine utilize PLC-coupled receptors (OT receptors (OTR), prostaglandin F2α receptors (FP) and α1-adrenergic receptors (AR

Free access

Akiko Katoh, Hiroaki Fujihara, Toyoaki Ohbuchi, Tatsushi Onaka, W Scott Young III, Govindan Dayanithi, Yuka Yamasaki, Mitsuhiro Kawata, Hitoshi Suzuki, Hiroki Otsubo, Hideaki Suzuki, David Murphy, and Yoichi Ueta

Introduction The neurohypophyseal hormones arginine vasopressin (AVP) and oxytocin (OXT) are mainly synthesised in discrete groups of magnocellular neurosecretory cells (MNCs) that are located in the hypothalamus. The gene expression, synthesis and

Free access

Yoko Fujiwara, Masami Hiroyama, Atsushi Sanbe, Junji Yamauchi, Gozoh Tsujimoto, and Akito Tanoue

Introduction Arginine-vasopressin (AVP) and oxytocin (OT) are neurohypophysial hormones synthesized in the paraventricular nucleus and supraoptic nucleus of the hypothalamus. AVP acts in many organs and plays a variety of

Free access

T Bossmar, N Osman, E Zilahi, M A El Haj, N Nowotny, and J M Conlon

Introduction The neurohypophyseal peptide hormones, oxytocin (OT) and vasopressin (VP), have potent uterotonic effects in both pregnant and non-pregnant humans and rats ( Bossmar et al. 1994 , 1995 , Chan et al. 1996

Free access

S Mukaddam-Daher, M Jankowski, D Wang, A Menaouar, and J Gutkowska

We have recently uncovered the presence of an oxytocin system in the heart and found that oxytocin is a physiological regulator of atrial natriuretic peptide (ANP), a diuretic, natriuretic and vasodilator cardiac hormone. However, dynamic changes in these systems during gestation, when mechanisms of volume and pressure homeostasis are altered, are not clear. Accordingly, ANP, oxytocin and oxytocin receptors were evaluated in rat hearts and plasma at three stages of gestation (7, 14 and 21 days) and at 2 and 5 days postpartum. Compared with non-pregnant controls, plasma ANP was elevated in mid-gestation, but significantly decreased at term (21 days), to increase again postpartum. Right and left atrial ANP mRNA levels were not altered throughout gestation but increased by 1.5- to 2-fold postpartum (P<0.01). At term, ANP content in right (8.7+/-1.2 vs 12.7+/-1.1 micro g/mg protein, P<0.04) and left (3.5+/-0.6 vs 8.5+/-2.0 micro g/mg protein, P<0.01) atria increased. These findings imply that decreased plasma ANP at term results from inhibition of release rather than decreased synthesis. In parallel, oxytocin, a stimulator of ANP release, decreased in left atria at day 7 to 50% of non-pregnant levels and remained low throughout gestation. Oxytocin receptor mRNA increased in left atria at 7 and 14 days of gestation by 2- and 5-fold respectively, but decreased at 21 days to lower than non-pregnant levels to increase again (3-fold) postpartum. The changes in oxytocin receptor expression at term and postpartum paralleled oxytocin receptor protein determined by Western blot. These results imply that pregnancy is associated with dynamic changes in the cardiac oxytocin system (peptide and/or receptors), which may influence natriuretic peptide release. Together, these peptides would act on their receptors in the heart, vasculature and kidneys to maintain vascular tone and renal function throughout gestation and postpartum.

Free access

JJ Evans, AH Youssef, MM Abbas, and J Schwartz

For full fertility in the female ovulation is necessary, which is dependent on the production of a surge of LH. An understanding of the processes which result in the high levels of LH requires delineation of the activities of individual component cells. In this study the responses of gonadotrophs to two signalling hypothalamic peptides, GnRH and oxytocin, were investigated. A cell immunoblot method was used to identify and distinguish between cells which secrete LH and those which contain LH but do not secrete the glycohormone. Rats were killed on the morning of pro-oestrus, the pituitary collected and the cells dispersed onto a protein-binding membrane for study. Cells were then incubated with GnRH and oxytocin, after which the membranes including the attached cells were stained by immunocytochemistry for LH. GnRH increased the total number of immunopositive cells which were present in a concentration-dependent manner. The most prominent change after 2 h incubation was in the number of secreting cells, whereas after 4 h there was also a marked increase in numbers of nonsecreting cells. Oxytocin also increased the total number of immunopositive cells in a concentration-responsive manner, however the profile of action of oxytocin was different from that observed for GnRH. Oxytocin had a relatively greater effect on numbers of immunopositive nonsecreting cells. Thus, the results reveal the potential for gonadotrophs to be flexibly and appropriately modulated by selected hypothalamic peptides. When cells were preincubated with oxytocin prior to GnRH there was not an additive increase in the numbers of immunopositive cells, suggesting that the two agonists act, in a nonidentical manner, on similar cells. The increase in the total number of immunopositive cells implies that there was a production of LH or post-translational processing, induced by exposure to GnRH or oxytocin. The results confirmed the heterogeneity of gonadotrophs and the existence of functionally distinguishable subpopulations, and revealed a difference between the effects of GnRH and oxytocin on expression and secretion of LH.

Free access

T Engstrom, P Bratholm, NJ Christensen, and H Vilhardt

The objective of the present study was to further elucidate our previous observation that beta2-adrenoceptor activation induces oxytocin receptor (OTR) expression in rat myometrium. We wanted to investigate whether the mechanism behind this effect was under the influence of gonadal steroids. Ovariectomized non-pregnant rats were treated with estrogen, progesterone or a combination of both for 3 days. Some rats were concomitantly treated with isoproterenol. Estrogen treatment increased both OTR mRNA production and maximal binding of [3H]-oxytocin to isolated myometrial plasma membranes, but it did not affect contractility of isolated uterine strips challenged with oxytocin. When the estrogen regimen was combined with isoproterenol treatment, an augmented maximal contractile response (Emax) to oxytocin was observed although no further increase in OTR mRNA and binding was seen. Progesterone treatment did not in itself alter OTR mRNA, OTR binding or Emax. However, OTRs were induced at the level of gene expression when progesterone was supplemented with isoproterenol infusion. Finally, progesterone suppressed the effect of estrogen on OTR mRNA production and binding when the two compounds were administered together. However, when isoproterenol treatment was added this effect was abolished and Emax was enhanced more than that seen following treatment with estrogen alone. These data suggest that beta2-adrenoceptor activation represents an important regulator of OTR expression/function in estrogen- and progesterone-dominated rat myometrium.

Free access

MF Walter, ML Forsling, and DG Shirley

In order to determine the possible role of endogenous oxytocin in controlling electrolyte and water excretion in animals whose renal function is being assessed by invasive techniques, rats were anaesthetized and subjected to micropuncture surgery. Clearance measurements were made in the presence and absence of the potent oxytocin receptor antagonist d(CH(2))(5)[Tyr(Me)(2), Thr(4), Orn(8), Tyr(NH(2))(9)]-vasotocin. In rats infused with vehicle alone, glomerular filtration rate (GFR), sodium excretion and urine flow rate remained stable. In contrast, in antagonist-treated rats GFR was modestly reduced (P<0.05), and there were large falls in both absolute and fractional sodium excretion (P<0.01 in each case) and absolute and fractional water excretion (P<0.05 in each case), indicating effects on both filtered load and fractional tubular reabsorption. The antinatriuresis was not accompanied by a change in the fractional excretion of lithium, suggesting that proximal tubular function is unaffected by oxytocin receptor antagonism; nor was it accompanied by a change in the fractional excretion of potassium, suggesting that the tubular effect is located beyond the potassium secretory site, i.e. downstream of the cortical collecting tubule. We conclude that circulating plasma concentrations of oxytocin during anaesthesia and moderate surgery are sufficient to enhance GFR and reduce fractional tubular sodium and water reabsorption. This has important implications for the interpretation of invasive studies such as micropuncture.

Free access

A Kanda, K Takuwa-Kuroda, E Iwakoshi-Ukena, Y Furukawa, O Matsushima, and H Minakata

We reported that the common octopus, Octopus vulgaris, in common with vertebrates, possesses two members of the oxytocin/vasopressin superfamily: octopressin (OP) and cephalotocin (CT). This was the first observation of its kind in invertebrates. As OP and CT have different biological activities, the presence of specific receptors has been proposed. We cloned the cDNA of an orphan receptor from Octopus brain and found it to encode a polypeptide of 397 amino acids that displays sequences characteristic of G-protein coupled receptors. The orphan receptor showed high homology to receptors of the oxytocin/vasopressin superfamily and seemed to conserve the agonist-binding pocket common to the oxytocin and vasopressin receptors. Xenopus oocytes that express the orphan receptor responded to the application of CT by an induction of membrane Cl(-) currents coupled to the inositol phosphate/Ca(2+) pathway. OP and the other members of the oxytocin/vasopressin superfamily did not activate this receptor. HPLC fractionation of the Octopus brain extract combined with an oocyte assay yielded a single substance that was identical to CT. On the basis of these results, we conclude that the cloned receptor is the CT receptor (CTR). Expression of CTR mRNA in Octopus was detected in the central and the peripheral nervous systems, the pancreas, the oviduct and the ovary. This receptor may mediate physiological functions of CT in Octopus such as neurotransmission, reproduction and metabolism.

Free access

B Sperlagh, Z Mergl, Z Juranyi, ES Vizi, and GB Makara

It is now widely accepted that ATP functions as a signalling substance in the nervous system. The presence of P2 receptors mediating the action of extracellular ATP in brain regions involved in hormonal regulation raises the possibility that a similar role for ATP might also exist in the neuroendocrine system. In this study, the release from the rat isolated neurohypophysis preparation of endogenous ATP, oxytocin and vasopressin (AVP) were measured simultaneously using luciferin-luciferase and RIA techniques. After 70 min preperfusion, electrical field stimulation caused a rapid increase in the amount of ATP in the effluent and the release of AVP and oxytocin also increased stimulation-dependently. Inhibition of voltage-dependent Na+ channels by tetrodotoxin (1 microM) reduced the stimulation-evoked release of AVP and oxytocin; however, the evoked release of ATP remained unaffected. The effect of endogenous ATP on the hormone secretion was tested by suramin (300 microM), the P2 receptor antagonist. Suramin significantly increased the release of AVP, and the release of oxytocin was also enhanced. ATP, when applied to the superfusing medium, decreased the release of AVP, but not that of oxytocin, and its effect was prevented by suramin. ATP (60 nmol), added to the tissues, was readily decomposed to ADP, AMP and adenosine measured by HPLC combined with ultraviolet light detection, and the kinetic parameters of the enzymes responsible for inactivation of ATP (ectoATPase and ecto5'-nucleotidase) were also determined (Km=264+/-2.7 and 334+/-165 microM and vmax=6.7+/-1.1 and 2.54+/-0.24 nmol/min per preparation (n=3) for ectoATPase and ecto5'-nucleotidase respectively). Taken together, our data demonstrate the stimulation-dependent release, P2 receptor-mediated action and extracellular metabolism of endogenous ATP in the posterior lobe of the hypophysis and indicate its role, as a paracrine regulator, in the local control of hormone secretion.