Search Results

You are looking at 31 - 40 of 178 items for :

  • circadian rhythm x
  • Refine by access: Content accessible to me x
Clear All
J L Crawford Reproduction Group, AgResearch Ltd, Wallaceville Animal Research Centre, Ward Street, PO Box 40063, Upper Hutt, New Zealand

Search for other papers by J L Crawford in
Google Scholar
PubMed
Close
,
B P Thomson Reproduction Group, AgResearch Ltd, Wallaceville Animal Research Centre, Ward Street, PO Box 40063, Upper Hutt, New Zealand

Search for other papers by B P Thomson in
Google Scholar
PubMed
Close
,
M F Beaumont Reproduction Group, AgResearch Ltd, Wallaceville Animal Research Centre, Ward Street, PO Box 40063, Upper Hutt, New Zealand

Search for other papers by M F Beaumont in
Google Scholar
PubMed
Close
, and
D C Eckery Reproduction Group, AgResearch Ltd, Wallaceville Animal Research Centre, Ward Street, PO Box 40063, Upper Hutt, New Zealand

Search for other papers by D C Eckery in
Google Scholar
PubMed
Close

1984 ). Daily changes in melatonin secretion also result in a prominent circadian rhythm of Prl secretion in the ram during long days; however, the timing of this cycle shifted and the rate of secretion diminished after exposure to short days

Free access
Sayaka Aizawa Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo‐ohkubo, Sakuraku, Saitama 338-8570, Japan

Search for other papers by Sayaka Aizawa in
Google Scholar
PubMed
Close
,
Takafumi Sakai Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo‐ohkubo, Sakuraku, Saitama 338-8570, Japan

Search for other papers by Takafumi Sakai in
Google Scholar
PubMed
Close
, and
Ichiro Sakata Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo‐ohkubo, Sakuraku, Saitama 338-8570, Japan

Search for other papers by Ichiro Sakata in
Google Scholar
PubMed
Close

mediation of seasonal or circadian signals ( Hazlerigg 2001 ). In fact, the duration of the photoperiod affects the structure of TSH cells and TSH β mRNA expression in the PT cells of the Djungarian hamster ( Bergmann et al . 1989 , Bockmann et al

Free access
HD Piggins
Search for other papers by HD Piggins in
Google Scholar
PubMed
Close
and
DJ Cutler
Search for other papers by DJ Cutler in
Google Scholar
PubMed
Close

Biological oscillations with an endogenous period of near 24 h (circadian rhythms) are generated by the master circadian pacemaker or clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus. This clock is synchronised to recurring environmental signals conveyed by selective neural pathways. One of the main chemical constituents of SCN neurones is vasoactive intestinal polypeptide (VIP). Such neurones are retinorecipient and activated by light. Exogenous application of VIP resets the SCN circadian clock in a light-like manner, both in vivo and in vitro. These resetting actions appear to be mediated through the VPAC2 receptor (a type of receptor for VIP). Unexpectedly, genetically ablating expression of the VPAC2 receptor renders the circadian clock arrhythmic at the molecular, neurophysiological and behavioural levels. These findings indicate that this intrinsic neuropeptide acting through the VPAC2 receptor participates in both resetting to light and maintenance of ongoing rhythmicity of the SCN.

Free access
H Okamura
Search for other papers by H Okamura in
Google Scholar
PubMed
Close

The core oscillatory mechanism consisting of gene transcription and translation is a unique feature and the astonishing discovery in circadian biology is that the rhythm of gene transcription reflects the behavioral rhythm almost perfectly. This means that the clock gene oscillation generated by the core loop in each suprachiasmatic nucleus neuron is coupled and amplified, and harmonized strongly so that oscillating activities are spread into the whole brain and to all those peripheral organs which contain peripheral clocks. Additionally, circadian changes are induced in behavior and hormone secretion. Investigations of biological clocks open the fascinating perspective to analyze the integrational mechanism of 'time', providing a bridge between single genes and the living organism as a whole.

Free access
GA Lincoln
Search for other papers by GA Lincoln in
Google Scholar
PubMed
Close
,
H Andersson
Search for other papers by H Andersson in
Google Scholar
PubMed
Close
, and
A Loudon
Search for other papers by A Loudon in
Google Scholar
PubMed
Close

Melatonin-based photoperiod time-measurement and circannual rhythm generation are long-term time-keeping systems used to regulate seasonal cycles in physiology and behaviour in a wide range of mammals including man. We summarise recent evidence that temporal, melatonin-controlled expression of clock genes in specific calendar cells may provide a molecular mechanism for long-term timing. The agranular secretory cells of the pars tuberalis (PT) of the pituitary gland provide a model cell-type because they express a high density of melatonin (mt1) receptors and are implicated in photoperiod/circannual regulation of prolactin secretion and the associated seasonal biological responses. Studies of seasonal breeding hamsters and sheep indicate that circadian clock gene expression in the PT is modulated by photoperiod via the melatonin signal. In the Syrian and Siberian hamster PT, the high amplitude Per1 rhythm associated with dawn is suppressed under short photoperiods, an effect that is mimicked by melatonin treatment. More extensive studies in sheep show that many clock genes (e.g. Bmal1, Clock, Per1, Per2, Cry1 and Cry2) are expressed in the PT, and their expression oscillates through the 24-h light/darkness cycle in a temporal sequence distinct from that in the hypothalamic suprachiasmatic nucleus (central circadian pacemaker). Activation of Per1 occurs in the early light phase (dawn), while activation of Cry1 occurs in the dark phase (dusk), thus photoperiod-induced changes in the relative phase of Per and Cry gene expression acting through PER/CRY protein/protein interaction provide a potential mechanism for decoding the melatonin signal and generating a long-term photoperiodic response. The current challenge is to identify other calendar cells in the central nervous system regulating long-term cycles in reproduction, body weight and other seasonal characteristics and to establish whether clock genes provide a conserved molecular mechanism for long-term timekeeping.

Free access
J Lund
Search for other papers by J Lund in
Google Scholar
PubMed
Close
,
J Arendt
Search for other papers by J Arendt in
Google Scholar
PubMed
Close
,
SM Hampton
Search for other papers by SM Hampton in
Google Scholar
PubMed
Close
,
J English
Search for other papers by J English in
Google Scholar
PubMed
Close
, and
LM Morgan
Search for other papers by LM Morgan in
Google Scholar
PubMed
Close

The circadian rhythms of many night-shift workers are maladapted to their imposed behavioural schedule, and this factor may be implicated in the increased occurrence of cardiovascular disease (CVD) reported in shift workers. One way in which CVD risk could be mediated is through inappropriate hormonal and metabolic responses to meals. This study investigated the responses to standard meals at different circadian times in a group of night-shift workers on a British Antarctic Survey station at Halley Bay (75 degrees S) in Antarctica. Twelve healthy subjects (ten men and two women) were recruited. Their postprandial hormone and metabolic responses to an identical mixed test meal of 3330 kJ were measured on three occasions: (i) during daytime on a normal working day, (ii) during night-time at the beginning of a period of night-shift work, and (iii) during the daytime on return from night working to daytime working. Venous blood was taken for 9 h after the meal for the measurement of glucose, insulin, triacylglycerol (TAG) and non-esterified fatty acids. Urine was collected 4-hourly (longer during sleep) on each test day for assessment of the circadian phase via 6-sulphatoxymelatonin (aMT6s) assay. During normal daytime working, aMT6s acrophase was delayed (7.7+/-1.0 h (s.e.m.)) compared with that previously found in temperate zones in a comparable age-group. During the night shift a further delay was evident (11.8+/-1.9 h) and subjects' acrophases remained delayed 2 days after return to daytime working (12.4+/-1.8 h). Integrated postprandial glucose, insulin and TAG responses were significantly elevated during the night shift compared with normal daytime working. Two days after their return to daytime working, subjects' postprandial glucose and insulin responses had returned to pre-shift levels; however, integrated TAG levels remained significantly elevated. These results are very similar to those previously found in simulated night-shift conditions; it is the first time such changes have been reported in real shift workers in field conditions. They provide evidence that the abnormal metabolic responses to meals taken at night during unadapted night shifts are due, at least in part, to a relative insulin resistance, which could contribute to the documented cardiovascular morbidity associated with shift work. When applied to the 20% of the UK workforce currently employed on shift work, these findings have major significance from an occupational health perspective.

Free access
Thomas Dickmeis Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

Search for other papers by Thomas Dickmeis in
Google Scholar
PubMed
Close

rhythms of electrical activity ( Welsh et al . 1995 ). This, together with the presence of circadian clocks in unicellular organisms ( Roenneberg & Merrow 2002 , Mackey & Golden 2007 ), suggested that the oscillator works in a cell-autonomous manner

Free access
DC Ribeiro
Search for other papers by DC Ribeiro in
Google Scholar
PubMed
Close
,
SM Hampton
Search for other papers by SM Hampton in
Google Scholar
PubMed
Close
,
L Morgan
Search for other papers by L Morgan in
Google Scholar
PubMed
Close
,
S Deacon
Search for other papers by S Deacon in
Google Scholar
PubMed
Close
, and
J Arendt
Search for other papers by J Arendt in
Google Scholar
PubMed
Close

The circadian rhythms of most night shift workers do not adapt fully to the imposed behavioural schedule, and this factor is considered to be responsible for many of the reported health problems. One way in which such disturbances might be mediated is through inappropriate hormonal and metabolic responses to meals, on the night shift. Twelve healthy subjects (four males and eight females) were studied on three occasions at the same clock time (1330 h), but at different body clock times, after consuming test meals, first in their normal environment, secondly after a forced 9 h phase advance (body clock time approximately 2230 h) and then again 2 days later in the normal environment. They were given a low-fat pre-meal at 0800 h, then a test meal at 1330 h with blood sampling for the following 9 h. Parameters measured included plasma glucose, non-esterified fatty acids (NEFAs), triacylglycerol (TAG), insulin, C-peptide, proinsulin and glucose-dependent insulinotropic polypeptide, and urinary 6-sulphatoxymelatonin. In contrast with a previous study with a high-fat pre-meal, postprandial glucose and insulin responses were not affected by the phase shift. However, basal plasma NEFAs were lower immediately after the phase shift (P < 0.05). Incremental (difference from basal) TAG responses were significantly higher (P < 0.05) immediately after the phase shift compared with before. Two-day post-phase shift responses showed partial reversion to baseline values. This study suggests that it takes at least 2 days to adapt to eating meals on a simulated night shift, and that the nutritional content of the pre-meals consumed can have a marked effect on postprandial responses during a simulated phase shift. Such findings may provide a partial explanation for the increased occurrence of cardiovascular disease reported in shift workers.

Free access
M Marie
Search for other papers by M Marie in
Google Scholar
PubMed
Close
,
PA Findlay
Search for other papers by PA Findlay in
Google Scholar
PubMed
Close
,
L Thomas
Search for other papers by L Thomas in
Google Scholar
PubMed
Close
, and
CL Adam
Search for other papers by CL Adam in
Google Scholar
PubMed
Close

Circulating concentrations of leptin in sheep correlate with body fatness and are affected by level of food intake and photoperiod. The present objective was to elucidate the short-term dynamics of leptin secretion. Frequent blood samples were taken over 48 h from 12 Soay rams after 16 weeks in short-day photoperiod (SD, 16 h darkness:8 h light) with freely available food, and then after 16 weeks in long days (16 h light:8 h darkness) with food freely available (LD) or restricted to 90% maintenance (LDR) (n=6/group). During the second 24 h of sampling, half were food deprived (n=6, SD and LD) and half had their meal times shifted (n=6, SD and LDR). A homologous RIA was developed, using antibodies raised in chicken against recombinant ovine leptin, to measure plasma concentrations. Simultaneous 24 h profiles of plasma insulin, glucose and non-esterified fatty acids (NEFA) were measured. Plasma leptin was higher in LD than SD, and in LD than LDR, associated with higher food intake, liveweight and body condition score (adiposity), but tended to be lower in LDR than SD, associated with lower food intake, liveweight and body condition score. There was no evidence for a circadian rhythm of plasma leptin, but clear evidence for post-prandial peaks of low amplitude (15-36%) 2-8 h after meals given at normal and shifted times. Complete food deprivation caused a dramatic fall in plasma leptin to basal levels within 24 h. There was a positive association of plasma leptin with plasma insulin, and negative association with NEFA, both between meals and during fasting. Thus, plasma leptin concentrations in sheep are sensitive to short-term changes in energy balance, as well as to long-term photoperiod-driven changes in food intake and adiposity.

Free access
Elizabeth K Fletcher Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
Tufts Medical Center, Boston, Massachusetts, USA

Search for other papers by Elizabeth K Fletcher in
Google Scholar
PubMed
Close
,
Monica Kanki Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by Monica Kanki in
Google Scholar
PubMed
Close
,
James Morgan Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by James Morgan in
Google Scholar
PubMed
Close
,
David W Ray NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK

Search for other papers by David W Ray in
Google Scholar
PubMed
Close
,
Lea M Delbridge Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Lea M Delbridge in
Google Scholar
PubMed
Close
,
Peter J Fuller Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by Peter J Fuller in
Google Scholar
PubMed
Close
,
Colin D Clyne Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by Colin D Clyne in
Google Scholar
PubMed
Close
, and
Morag J Young Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by Morag J Young in
Google Scholar
PubMed
Close

peripheral tissue to anticipate environmental stimuli ( Takahashi & Zatz 1982 ). The GR and MR are not expressed in the SCN but the GR serves as a zeitgeber of the circadian clock in peripheral tissues ( Kino & Chrousos 2011 a ). Circadian rhythm is driven

Free access