Search Results

You are looking at 61 - 70 of 1,488 items for :

  • Refine by access: Content accessible to me x
Clear All
Kotaro Horiguchi Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Kotaro Horiguchi in
Google Scholar
PubMed
Close
,
Motoshi Kikuchi Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Motoshi Kikuchi in
Google Scholar
PubMed
Close
,
Kenji Kusumoto Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Kenji Kusumoto in
Google Scholar
PubMed
Close
,
Ken Fujiwara Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Ken Fujiwara in
Google Scholar
PubMed
Close
,
Tom Kouki Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Tom Kouki in
Google Scholar
PubMed
Close
,
Kotaro Kawanishi Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Kotaro Kawanishi in
Google Scholar
PubMed
Close
, and
Takashi Yashiro Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Takashi Yashiro in
Google Scholar
PubMed
Close

Introduction The anterior pituitary gland is composed of five types of hormone-producing cells and the folliculo-stellate cells (FS cells), which do not produce the classical anterior pituitary hormones. In vivo , these cells are surrounded by

Free access
Catherine Roche
Search for other papers by Catherine Roche in
Google Scholar
PubMed
Close
,
Alfredo J Zamora
Search for other papers by Alfredo J Zamora in
Google Scholar
PubMed
Close
,
David Taïeb
Search for other papers by David Taïeb in
Google Scholar
PubMed
Close
,
Esteban Lavaque
Search for other papers by Esteban Lavaque in
Google Scholar
PubMed
Close
,
Ramahefarizo Rasolonjanahary
Search for other papers by Ramahefarizo Rasolonjanahary in
Google Scholar
PubMed
Close
,
Henri Dufour
Search for other papers by Henri Dufour in
Google Scholar
PubMed
Close
,
Claude Bagnis
Search for other papers by Claude Bagnis in
Google Scholar
PubMed
Close
,
Alain Enjalbert
Search for other papers by Alain Enjalbert in
Google Scholar
PubMed
Close
, and
Anne Barlier
Search for other papers by Anne Barlier in
Google Scholar
PubMed
Close

Introduction Pituitary adenomas account for 10–15% of all intracranial tumors. Ninety percent are represented by somatotroph adenomas (growth hormone (GH) secretors), clinically non-functioning adenomas (mainly gonadotroph) and

Free access
YM Keda
Search for other papers by YM Keda in
Google Scholar
PubMed
Close
,
IV Krjukova
Search for other papers by IV Krjukova in
Google Scholar
PubMed
Close
,
IA Ilovaiskaia
Search for other papers by IA Ilovaiskaia in
Google Scholar
PubMed
Close
,
MS Morozova
Search for other papers by MS Morozova in
Google Scholar
PubMed
Close
,
OV Fofanova
Search for other papers by OV Fofanova in
Google Scholar
PubMed
Close
,
MB Babarina
Search for other papers by MB Babarina in
Google Scholar
PubMed
Close
,
EI Marova
Search for other papers by EI Marova in
Google Scholar
PubMed
Close
,
YA Pankov
Search for other papers by YA Pankov in
Google Scholar
PubMed
Close
, and
VI Kandror
Search for other papers by VI Kandror in
Google Scholar
PubMed
Close

Autoantibodies to cell surface antigens of human somatotropinoma (ASAS), human prolactinoma (ASAP) and rat adenohypophysis (ASARA) were assayed in the serum of patients with pituitary diseases associated with GH deficiency (GHD), such as pituitary dwarfism and primary empty sella syndrome (ESS), and in the serum of patients with hyperprolactinaemia of different etiologies: idiopathic hyperprolactinaemia, prolactinoma and ESS. The investigation was carried out with a cellular variant of an ELISA. Among children with GHD, the highest percentage of antibody-positive patients was found in the group with idiopathic isolated GHD (89% of ASAS(+) patients and 30% of ASARA(+) patients vs 33.3% and 0% respectively in the group with idiopathic combined pituitary hormone deficiency, and 33.3% and 9% in patients with pituitary hypoplasia associated with isolated GHD or combined pituitary hormone deficiency). Among hyperprolactinaemic patients, the highest ASAP and ASARA frequency was observed in patients with idiopathic hyperprolactinaemia (67.7% and 41.9% respectively) where it was twice as high as in the group of patients with prolactinoma. The proportion of ASAS(+) and ASARA(+) did not differ significantly between the groups of patients with ess with or without GHD. Similarly, there was no significant difference between the number of ESS ASAP(+) and ASARA(+) patients with or without hyperprolactinaemia. The data obtained suggested that autoimmune disorders may be primary, and responsible, at least in part, for pituitary dysfunction in the cases of idiopathic isolated GHD and idiopathic hyperprolactinaemia. At the same time, the autoimmune disorders in the patients with prolactinoma or ESS are probably secondary to the organic pituitary lesion and their significance in the development of the pituitary dysfunction is obscure.

Free access
Kristien Vandenborne Laboratory of Comparative Endocrinology, Zoological Institute, K U Leuven, Naamsestraat 61, B-3000 Leuven, Belgium

Search for other papers by Kristien Vandenborne in
Google Scholar
PubMed
Close
,
Bert De Groef Laboratory of Comparative Endocrinology, Zoological Institute, K U Leuven, Naamsestraat 61, B-3000 Leuven, Belgium

Search for other papers by Bert De Groef in
Google Scholar
PubMed
Close
,
Sofie M E Geelissen Laboratory of Comparative Endocrinology, Zoological Institute, K U Leuven, Naamsestraat 61, B-3000 Leuven, Belgium

Search for other papers by Sofie M E Geelissen in
Google Scholar
PubMed
Close
,
Eduard R Kühn Laboratory of Comparative Endocrinology, Zoological Institute, K U Leuven, Naamsestraat 61, B-3000 Leuven, Belgium

Search for other papers by Eduard R Kühn in
Google Scholar
PubMed
Close
,
Veerle M Darras Laboratory of Comparative Endocrinology, Zoological Institute, K U Leuven, Naamsestraat 61, B-3000 Leuven, Belgium

Search for other papers by Veerle M Darras in
Google Scholar
PubMed
Close
, and
Serge Van der Geyten Laboratory of Comparative Endocrinology, Zoological Institute, K U Leuven, Naamsestraat 61, B-3000 Leuven, Belgium

Search for other papers by Serge Van der Geyten in
Google Scholar
PubMed
Close

Introduction It has been known for decades that stressful situations cause an increase in the activity of the hypothalamo–pituitary–adrenal (HPA) axis, and this has been studied in great detail in mammals ( Vazquez 1998 , Makino et

Free access
Cimi Ilmiawati Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Cimi Ilmiawati in
Google Scholar
PubMed
Close
,
Kotaro Horiguchi Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Kotaro Horiguchi in
Google Scholar
PubMed
Close
,
Ken Fujiwara Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Ken Fujiwara in
Google Scholar
PubMed
Close
, and
Takashi Yashiro Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Search for other papers by Takashi Yashiro in
Google Scholar
PubMed
Close

Introduction The anterior pituitary gland regulates homeostasis by meticulous adjustment of hormonal secretion. Folliculostellate (FS) cells are present in the anterior pituitary gland but do not secrete classical hormones. Although FS cells are

Free access
Ramanaiah Mamillapalli Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, TAC S131, PO Box 208020, New Haven, Connecticut 06520-8020, USA

Search for other papers by Ramanaiah Mamillapalli in
Google Scholar
PubMed
Close
and
John Wysolmerski Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, TAC S131, PO Box 208020, New Haven, Connecticut 06520-8020, USA

Search for other papers by John Wysolmerski in
Google Scholar
PubMed
Close

in many sites. Both PTHrP and the CaR are expressed in the normal pituitary gland, pituitary tumors, and pituitary cell lines, although their biological function(s) in pituitary cells is not clear ( Ikeda et al . 1988 , Asa et al . 1990 , Fraser

Free access
J Christoffel Division of Clinical and Experimental Endocrinology, Department of Obstetrics and Gynecology, University of Göttingen, Robert-Koch-Str 40, 37099 Göttingen, Germany

Search for other papers by J Christoffel in
Google Scholar
PubMed
Close
,
G Rimoldi Division of Clinical and Experimental Endocrinology, Department of Obstetrics and Gynecology, University of Göttingen, Robert-Koch-Str 40, 37099 Göttingen, Germany

Search for other papers by G Rimoldi in
Google Scholar
PubMed
Close
, and
W Wuttke Division of Clinical and Experimental Endocrinology, Department of Obstetrics and Gynecology, University of Göttingen, Robert-Koch-Str 40, 37099 Göttingen, Germany

Search for other papers by W Wuttke in
Google Scholar
PubMed
Close

. Therefore, the model of the ovx rat was chosen, which is a widely used and accepted model to study estrogenic activities. A treatment time of 3 months was selected to determine whether the endocrine regulation of hypothalamo-pituitary-gonadal (HPG) axis is

Free access
K E Lines Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by K E Lines in
Google Scholar
PubMed
Close
,
P J Newey Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK

Search for other papers by P J Newey in
Google Scholar
PubMed
Close
,
C J Yates Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by C J Yates in
Google Scholar
PubMed
Close
,
M Stevenson Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by M Stevenson in
Google Scholar
PubMed
Close
,
R Dyar Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by R Dyar in
Google Scholar
PubMed
Close
,
G V Walls Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by G V Walls in
Google Scholar
PubMed
Close
,
M R Bowl Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by M R Bowl in
Google Scholar
PubMed
Close
, and
R V Thakker Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by R V Thakker in
Google Scholar
PubMed
Close

Introduction Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic islet tumours ( Pieterman et al. 2009 , Goudet et al. 2010

Open access
M Szczesna
Search for other papers by M Szczesna in
Google Scholar
PubMed
Close
,
D A Zieba
Search for other papers by D A Zieba in
Google Scholar
PubMed
Close
,
B Klocek-Gorka
Search for other papers by B Klocek-Gorka in
Google Scholar
PubMed
Close
,
T Misztal Laboratory of Biotechnology and Genomics, Department of Endocrinology, Independent Laboratory of Molecular Biology and Research, Department of Swine and Small Ruminant Breeding, Agricultural University, 31-274 Krakow, Poland

Search for other papers by T Misztal in
Google Scholar
PubMed
Close
, and
E Stepien Laboratory of Biotechnology and Genomics, Department of Endocrinology, Independent Laboratory of Molecular Biology and Research, Department of Swine and Small Ruminant Breeding, Agricultural University, 31-274 Krakow, Poland

Search for other papers by E Stepien in
Google Scholar
PubMed
Close

may play a pivotal role in the modulation of neuroendocrine interactions. There is some evidence to suggest that SOCS-3 has important functions within the pituitary. In adrenocorticotrophs, SOCS-3 has been shown to be a potent feedback inhibitor of

Free access
Sylvia V H Grommen
Search for other papers by Sylvia V H Grommen in
Google Scholar
PubMed
Close
,
Lutgarde Arckens Research Group of Comparative Endocrinology, Research Group of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Section, Department of Biology, K U Leuven, Naamsestraat 61, B-3000 Leuven, Belgium

Search for other papers by Lutgarde Arckens in
Google Scholar
PubMed
Close
,
Tim Theuwissen Research Group of Comparative Endocrinology, Research Group of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Section, Department of Biology, K U Leuven, Naamsestraat 61, B-3000 Leuven, Belgium

Search for other papers by Tim Theuwissen in
Google Scholar
PubMed
Close
,
Veerle M Darras
Search for other papers by Veerle M Darras in
Google Scholar
PubMed
Close
, and
Bert De Groef
Search for other papers by Bert De Groef in
Google Scholar
PubMed
Close

( Decuypere et al . 1990 ). THs are known to play an important role in controlling their own secretion through feedback effects acting on the different levels of the hypothalamo–pituitary–thyroidal (HPT) axis. In birds, information on TH feedback is scarce

Free access