Search Results

You are looking at 71 - 80 of 258 items for :

  • User-accessible content x
Clear All
Free access

L B Hays, B Wicksteed, Y Wang, J F McCuaig, L H Philipson, J M Edwardson and C J Rhodes

Amersham Biosciences (Arlington Heights, IL, USA), containing 75% l -[ 35 S]methionine was used for islet protein synthesis radiolabeling. Uridine 5′-[α- 32 P]triphosphate (3000 Ci/mmol) was purchased from Amersham Biosciences. Glucagon-like peptide-1 (GLP

Free access

Raylene A Reimer, Gary J Grover, Lee Koetzner, Roland J Gahler, Michael R Lyon and Simon Wood

newer antidiabetic agent that increases circulating levels of active glucagon-like peptide 1 (GLP1) by inhibiting dipeptidyl peptidase 4 (DPP4) activity ( Ahren 2007 ). Given that treatment with single antihyperglycemic agents often fails to achieve

Free access

Astrid C Hauge-Evans, James Bowe, Zara J Franklin, Zoheb Hassan and Peter M Jones

available kits (Insulin: Millipore Ltd, Watford, UK; glucagon: Mercodia, Uppsala, Sweden; SST and GLP1: USCN Life Science, Inc., Wuhan, China; catecholamine: Bioassay Technology Laboratory, Shanghai, China). Islet hormone concentrations in the incubation

Free access

Barbara C Fam, Rebecca Sgambellone, Zheng Ruan, Joseph Proietto and Sofianos Andrikopoulos

-like peptide 1 ( Glp1 ) mRNA in gut ileum. Glp1 mRNA expression was significantly reduced in DIO mice as compared to both DR and chow-fed mice ( Fig. 6 A), whereas DR mice had the same expression level as chow-fed mice. When GPR gene levels were assessed, DIO

Free access

MD Robertson, G Livesey, LM Morgan, SM Hampton and JC Mathers

Glucagon-like peptide (7-36) amide (GLP-1) is an incretin hormone of the enteroinsular axis released rapidly after meals despite the fact that GLP-1 secreting cells (L-cells) occur predominantly in the distal gut. The importance of these colonic L-cells for postprandial GLP-1 was determined in healthy control subjects and in ileostomy patients with minimal small bowel resection (<5 cm). Subjects were fed a high complex carbohydrate test meal (15.3 g starch) followed by two carbohydrate-free, high fat test meals (25 g and 48.7 g fat respectively). Circulating levels of glucose, insulin, glucagon, glucose insulinotrophic peptide (GIP) and GLP-1 were measured over a 9-h postprandial period. For both subject groups the complex carbohydrate test meal failed to elicit a rise in either GIP or GLP-1. However, both hormones were elevated after the fat load although the GLP-1 concentration was significantly reduced in the ileostomist group when compared with controls (P=0.02). Associated with this reduction in circulating GLP-1 was an elevation in glucagon concentration (P=0.012) and a secondary rise in the plasma glucose concentration (P=0.006). These results suggest that the loss of colonic endocrine tissue is an important determinant in the postprandial GLP-1 concentration. Ileostomists should not be assumed to have normal enteroinsular function as the colon appears to have an important role in postprandial metabolism.

Free access

A Acitores, N Gonzalez, V Sancho, I Valverde and ML Villanueva-Penacarrillo

Glucagon-like peptide-1 (GLP-1), an incretin with glucose-dependent insulinotropic and insulin-independent antidiabetic properties, has insulin-like effects on glucose metabolism in extrapancreatic tissues participating in overall glucose homeostasis. These effects are exerted through specific receptors not associated with cAMP, an inositol phosphoglycan being a possible second messenger. In rat hepatocytes, activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB), protein kinase C (PKC) and protein phosphatase 1 (PP-1) has been shown to be involved in the GLP-1-induced stimulation of glycogen synthase. We have investigated the role of enzymes known or suggested to mediate the actions of insulin in the GLP-1-induced increase in glycogen synthase a activity in rat skeletal muscle strips. We first explored the effect of GLP-1, compared with that of insulin, on the activation of PI3K, PKB, p70s6 kinase (p70s6k) and p44/42 mitogen-activated protein kinases (MAPKs) and the action of specific inhibitors of these kinases on the insulin- and GLP-1-induced increment in glycogen synthase a activity. The study showed that GLP-1, like insulin, activated PI3K/PKB, p70s6k and p44/42. Wortmannin (a PI3K inhibitor) reduced the stimulatory action of insulin on glycogen synthase a activity and blocked that of GLP-1, rapamycin (a 70s6k inhibitor) did not affect the action of GLP-1 but abolished that of insulin, PD98059 (MAPK inhibitor) was ineffective on insulin but blocked the action of GLP-1, okadaic acid (a PP-2A inhibitor) and tumour necrosis factor-alpha (a PP-1 inhibitor) were both ineffective on GLP-1 but abolished the action of insulin, and Ro 31-8220 (an inhibitor of some PKC isoforms) reduced the effect of GLP-1 while completely preventing that of insulin. It was concluded that activation of PI3K/PKB and MAPKs is required for the GLP-1-induced increment in glycogen synthase a activity, while PKC, although apparently participating, does not seem to play an essential role; unlike in insulin signaling, p70s6k, PP-1 and PP-2A do not seem to be needed in the action of GLP-1 upon glycogen synthase a activity in rat muscle.

Free access

Peixin Li, Zhijian Rao, Brenton Thomas Laing, Wyatt Bunner, Taylor Landry, Amber Prete, Yuan Yuan, Zhong-Tao Zhang and Hu Huang

play a direct role after VSG. Furthermore, recent clinical studies in humans have shown that improved glucose homeostasis and even diabetes remission may be related to increased nutrient-stimulated glucagon-like peptide (GLP)-1 and peptide YY (PYY

Free access

S Saifia, AM Chevrier, A Bosshard, JC Cuber, JA Chayvialle and J Abello

The neuropeptide galanin is widely distributed in the gastrointestinal tract and exerts several inhibitory effects, especially on intestinal motility and on insulin release from pancreatic beta-cells. The presence of galanin fibres not only in the myenteric and submucosal plexus but also in the mucosa, prompted us to investigate the regulatory role of galanin, and its mechanism of action, on the secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1). Rat ileal cells were dispersed through mechanical vibration followed by moderate exposure to hyaluronidase, DNase I and EDTA, and enriched for L-cells by counterflow elutriation. A 6- to 7-fold enrichment in GLP-1 cell content was registered after elutriation, as compared with the crude cell preparation (929 +/- 81 vs 138 +/- 14 fmol/10(6) cells). L-cells then accounted for 4-5% of the total cell population. Bombesin induced a time-(15-240 min) and dose- (0.1 nM-1 microM) dependent release of GLP-1. Glucose-dependent insulinotropic peptide (GIP, 100 nM), forskolin (10 microM) and the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA, 1 microM) each stimulated GLP-1 secretion over a 1-h incubation period. Galanin (0.01-100 nM) induced a dose-dependent inhibition of bombesin- and of GIP-stimulated GLP-1 release (mean inhibition of 90% with 100 nM galanin). Galanin also dose-dependently inhibited forskolin-induced GLP-1 secretion (74% of inhibition with 100 nM galanin), but not TPA-stimulated hormone release. Pretreatment of cells with 200 ng/ml pertussis toxin for 3 h, or incubation with the ATP-sensitive K+ channel blocker disopyramide (200 microM), prevented the inhibition by galanin of bombesin- and GIP-stimulated GLP-1 secretion. These studies indicate that intestinal secretion of GLP-1 is negatively controlled by galanin, that acts through receptors coupled to pertussis toxin-sensitive G protein and involves ATP-dependent K+ channels.

Free access

CF Deacon, S Wamberg, P Bie, TE Hughes and JJ Holst

The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are degraded by dipeptidyl peptidase IV (DPP IV), thereby losing insulinotropic activity. DPP IV inhibition reduces exogenous GLP-1 degradation, but the extent of endogenous incretin protection has not been fully assessed, largely because suitable assays which distinguish between intact and degraded peptides have been unavailable. Using newly developed assays for intact GLP-1 and GIP, the effect of DPP IV inhibition on incretin hormone metabolism was examined. Conscious dogs were given NVP-DPP728, a specific DPP IV inhibitor, at a dose that inhibited over 90% of plasma DPP IV for the first 90 min following treatment. Total and intact incretin concentrations increased (P<0.0001) following a mixed meal, but on control days (vehicle infusion), intact peptide concentrations were lower (P<0.01) than total peptide concentrations (22.6 +/- 1.2% intact GIP; 10.1 +/- 0.4% intact GLP-1). Following inhibitor treatment, the proportion of intact peptide increased (92.5 +/- 4.3% intact GIP, P<0.0001; 99.0 +/- 22.6% intact GLP-1, P<0.02). Active (intact) incretins increased after NVP-DPP728 (from 4797 +/- 364 to 10 649 +/- 106 pM x min for GIP, P<0.03; from 646 +/- 134 to 2822 +/- 528 pM x m in for GLP-1, P<0.05). In contrast, total incretins fell (from 21 632 +/- 654 to 12 084 +/- 1723 pM x min for GIP, P<0.002; from 5145 +/- 677 to 3060 +/- 601 pM x min for GLP-1, P<0.05). Plasma glucose, insulin and glucagon concentrations were unaltered by the inhibitor. We have concluded that DPP IV inhibition with NVP-DPP728 prevents N-terminal degradation of endogenous incretins in vivo, resulting in increased plasma concentrations of intact, biologically active GIP and GLP-1. Total incretin secretion was reduced by DPP IV inhibition, suggesting the possibility of a feedback mechanism.

Free access

J Claustre, S Brechet, P Plaisancie, JA Chayvialle and JC Cuber

Postprandial release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L cells results from both nutrient transit in the ileal lumen and neural drive of endocrine cells. The adrenosympathetic system and its effectors have been shown to induce secretion of L cells in vivo or in vitro. Because these transmitters act through three receptors, beta, alpha1, alpha2, coupled to different intracellular pathways, we evaluated the responses of L cells to specific agonists, using the model of isolated vascularly perfused rat ileum. General stimulation of adrenergic receptors with epinephrine (10(-7) M) induced significant GLP-1 and PYY secretions (94+/-38 and 257+/-59 fmol/8 min respectively) which were abolished upon propranolol (10(-7) M) pretreatment and strongly decreased upon infusion with 10(-8) M prazosin. Blockade of alpha2-receptors with idazoxan (10(-8) M) did not alter epinephrine-induced peptide secretion. The beta-adrenergic agonist isoproterenol (10(-6) M) infused for 30 min induced a transient release of GLP-1 and PYY (integrated release over the 8 min of the peak secretion: 38+/-16 and 214+/-69 fmol for GLP-1 and PYY respectively, P<0.05). Because terbutaline but not dobutamine or BRL 37,344 (10(-5) M) induced significant GLP-1 and PYY secretions (135+/-30 and 305+/-39 fmol/8 min respectively), isoproterenol-induced secretions are suggested to result mainly from stimulation of the beta2-isoreceptor type. In contrast, the alpha1-agonist phenylephrine (10(-7) M) did not stimulate peptide release. When co-infused with 10(-6) M or 10(-7) M isoproterenol, 10(-7) M phenylephrine raised GLP-1 release to 174+/-53 and 108+/-28 fmol/8 min respectively (vs 38+/-16 and 35+/-10 fmol/8 min for isoproterenol alone, P<0.05) whereas PYY secretion was not significantly increased. Clonidine (10(-7) M), an alpha2-agonist, induced a moderate and delayed increase of GLP-1 and PYY but abolished the isoproterenol-induced peptide secretion. Our results showed that general stimulation of adrenergic receptors stimulates the secretory activity of ileal endocrine L cells. The net peptide secretion results from the activation of the beta2-isoreceptor type. Additionally, GLP-1 and PYY secretions are positively modulated by alpha1-receptor stimulation and inhibited by alpha2-receptor activation upon beta-receptor occupation.