Search Results

You are looking at 101 - 110 of 3,584 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
  • All content x
Clear All Modify Search
Free access

TY Tai, JY Lu, CL Chen, MY Lai, PJ Chen, JH Kao, CZ Lee, HS Lee, LM Chuang, and YM Jeng

This study aimed at elucidating the effects of interferon (IFN)-alpha on glucose metabolism in patients with chronic hepatitis B and C infections. Twenty-eight biopsy-proven patients with chronic hepatitis B (ten cases) and hepatitis C (18 cases) were given IFN-alpha for a total of 24 weeks. The patients received a 75 g oral glucose tolerance test (OGTT), glucagon stimulation test, tests for type 1 diabetes-related autoantibodies and an insulin suppression test before and after IFN-alpha therapy. Ten of the 28 patients responded to IFN-alpha therapy. Steady-state plasma glucose of the insulin suppression test decreased significantly in responders (13.32+/-1.48 (S.E.M.) vs 11.33+/-1.19 mmol/l, P=0.0501) but not in non-responders (12.29+/-1.24 vs 11.11+/-0.99 mmol/l, P=0.2110) immediately after completion of IFN-alpha treatment. In the oral glucose tolerance test, no significant difference was observed in plasma glucose in either responders (10.17+/-0.23 vs 10.03+/-0.22 mmol/l) or non-responders (10.11+/-0.22 vs 9.97+/-0.21 mmol/l) 3 Months after completion of IFN-alpha treatment. However, significant differences were noted in C-peptide in both responders (2.90+/-0.13 vs 2.20+/-0.09 nmol/l, P=0.0040) and non-responders (2.45+/-0.11 vs 2.22+/-0.08 nmol/l, P=0.0287) before vs after treatment. The changes of C-peptide in an OGTT between responders and non-responders were also significantly different (P=0.0028), with responders reporting a greater reduction in C-peptide. No case developed autoantibodies during the treatment. In patients who were successfully treated with IFN-alpha, insulin sensitivity improved and their plasma glucose stayed at the same level without secreting as much insulin from islet beta-cells.

Free access

Gordon Moody, Pedro J Beltran, Petia Mitchell, Elaina Cajulis, Young-Ah Chung, David Hwang, Richard Kendall, Robert Radinsky, Pinchas Cohen, and Frank J Calzone

Ganitumab is a fully human MAB to the human type 1 IGF receptor (IGF1R). Binding assays showed that ganitumab recognized murine IGF1R with sub-nanomolar affinity (K D=0.22 nM) and inhibited the interaction of murine IGF1R with IGF1 and IGF2. Ganitumab inhibited IGF1-induced activation of IGF1R in murine lungs and CT26 murine colon carcinoma cells and tumors. Addition of ganitumab to 5-fluorouracil resulted in enhanced inhibition of tumor growth in the CT26 model. Pharmacological intervention with ganitumab in naïve nude mice resulted in a number of physiological changes described previously in animals with targeted deletions of Igf1 and Igf1r, including inhibition of weight gain, reduced glucose tolerance and significant increase in serum levels of GH, IGF1 and IGFBP3. Flow cytometric analysis identified GR1/CD11b-positive cells as the highest IGF1R-expressing cells in murine peripheral blood. Administration of ganitumab led to a dose-dependent, reversible decrease in the number of peripheral neutrophils with no effect on erythrocytes or platelets. These findings indicate that acute IGF availability for its receptor plays a critical role in physiological growth, glucose metabolism and neutrophil physiology and support the presence of a pituitary IGF1R-driven negative feedback loop that tightly regulates serum IGF1 levels through Gh signaling.

Restricted access

Sandra K Szlapinski, Anthony A Botros, Sarah Donegan, Renee T King, Gabrielle Retta, Brenda J Strutt, and David J Hill

Gestational diabetes mellitus increases the risk of dysglycemia postpartum, in part, due to pancreatic β-cell dysfunction. However, no histological evidence exists comparing endocrine pancreas after healthy and glucose-intolerant pregnancies. This study sought to address this knowledge gap, in addition to exploring the contribution of an inflammatory environment to changes in endocrine pancreas after parturition. We used a previously established mouse model of gestational glucose intolerance induced by dietary low protein insult from conception until weaning. Pancreas and adipose samples were collected at 7, 30 and 90 days postpartum for histomorphometric and cytokine analyses, respectively. Glucose tolerance tests were performed prior to euthanasia and blood was collected via cardiac puncture. Pregnant female mice born to dams fed a low protein diet previously shown to develop glucose intolerance at late gestation relative to controls continued to be glucose intolerant until 1 month postpartum. However, glucose tolerance normalized by 3 months postpartum. Glucose intolerance at 7 days postpartum was associated with lower beta- and alpha-cell fractional areas and higher adipose levels of pro-inflammatory cytokine, interleukin-6. By 3 months postpartum, a compensatory increase in the number of small islets and a higher insulin to glucagon ratio likely enabled euglycemia to be attained in the previously glucose-intolerant mice. The results show that impairments in endocrine pancreas compensation in hyperglycemic pregnancy persist after parturition and contribute to prolonged glucose intolerance. These impairments may increase the susceptibility to development of future type 2 diabetes.

Free access

A Alidibbiat, C E Marriott, K T Scougall, S C Campbell, G C Huang, W M Macfarlane, and J A M Shaw

Generation of new β-cells from the adult pancreas or the embryonic stem cells is being pursued by research groups worldwide. Success will be dependent on confirmation of true β-cell phenotype evidenced by capacity to process and store proinsulin. The aim of these studies was to robustly determine endocrine characteristics of the AR42J rat pancreatic acinar cell line before and after in vitro transdifferentiation. β-cell phenotypic marker expression was characterised by RT-PCR, immunostaining, western blotting, ELISA and in human preproinsulin transgene over-expression studies in wild-type AR42J cells and after culture on Matrigel basement membrane matrix with and without growth/differentiation factor supplementation. Pancreatic duodenal homeobox 1 (PDX1), forkhead box transcription factor a2 (Foxa2), glucokinase, pancreatic polypeptide and low-level insulin gene transcription in wild-type AR42J cells were confirmed by RT-PCR. Culture on Matrigel-coated plates and supplementation of medium with glucagon-like peptide 1 induced expression of the β-cell Glut 2 with maintained expression of insulin and PDX1. Increased biosynthesis and secretion of proinsulin were confirmed by immunocytochemical staining and sensitive ELISA. Absence of the regulated secretory pathway was demonstrated by undetectable prohormone convertase expression. In addition, inability to process and store endogenous proinsulin or human proinsulin translated from a constitutively over-expressed preproinsulin transgene was confirmed. The importance of robust phenotypic characterisation at the protein level in attempted β-cell transdifferentiation studies has been confirmed. Rodent and human sensitive/specific differential proinsulin/insulin ELISA in combination with human preproinsulin over-expression enables detailed elucidatation of core endocrine functions of proinsulin processing and storage in putative new β-cells.

Restricted access

Ziping Jiang, Junduo Wu, Fuzhe Ma, Jun Jiang, Linlin Xu, Lei Du, Wenlin Huang, Zhaohui Wang, Ye Jia, Laijin Lu, and Hao Wu

Over a half of the diabetic individuals develop macrovascular complications that cause high mortality. Oxidative stress (OS) promotes endothelial dysfunction (ED) which is a critical early step toward diabetic macrovascular complications. Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system and combats diabetes-induced OS. Previously, we found that impaired NRF2 antioxidant signaling contributed to diabetes-induced endothelial OS and dysfunction in mice. The present study has investigated the effect of microRNA-200a (miR-200a) on NRF2 signaling and diabetic ED. In aortic endothelial cells (ECs) isolated from C57BL/6 wild-type (WT) mice, high glucose (HG) reduced miR-200a levels and increased the expression of kelch-like ECH-associated protein 1 (Keap1) – a target of miR-200a and a negative regulator of NRF2. This led to the inactivation of NRF2 signaling and exacerbation of OS and inflammation. miR-200a mimic (miR-200a-M) or inhibitor modulated KEAP1/NRF2 antioxidant signaling and manipulated OS and inflammation under HG conditions. These effects were completely abolished by knockdown of Keap1, indicating that Keap1 mRNA is a major target of miR-200a. Moreover, the protective effect of miR-200a-M was completely abrogated in aortic ECs isolated from C57BL/6 Nrf2 knockout (KO) mice, demonstrating that NRF2 is required for miR-200a’s actions. In vivo, miR-200a-M inhibited aortic Keap1 expression, activated NRF2 signaling, and attenuated hyperglycemia-induced OS, inflammation and ED in the WT, but not Nrf2 KO, mice. Therefore, the present study has uncovered miR-200a/KEAP1/NRF2 signaling that controls aortic endothelial antioxidant capacity, which protects against diabetic ED.

Free access

Andreas Börjesson and Carina Carlsson

In order to elucidate a possible relationship between β-cell function and conversion of proinsulin to insulin, isolated rat pancreatic islets were maintained in tissue culture for 1 week at various glucose concentrations (5.6–56 mM). Studies were also conducted on islets cultured for 48 h with interleukin-1β (IL-1β). By pulse-chase labelling and immunoprecipitation, the relative contents of newly synthesized proinsulin and insulin were determined. ELISA was used to analyse insulin and proinsulin content in medium and within islets. Using real-time PCR, the mRNA levels of proinsulin converting enzymes (PC1 and PC2) were studied. Islets cultured at 56 mM glucose had an increased proportion of newly synthesized proinsulin when compared with islets cultured at 5.6 mM glucose after a 90-min chase periods, however, no difference was observed after culture at 11 and 28 mM glucose. ELISA measurements revealed that culture at increased glucose concentrations as well as islet exposure to IL-1β increased proinsulin accumulation in the culture media. The mRNA expression of PC1 was increased after culture at 11 and 28 mM glucose. Treatment for 48 h with IL-1β increased the proportion of proinsulin both at 45 and 90 min when compared with control islets. These islets also displayed a decreased mRNA level of PC1 as well as PC2. Calculations of the half-time for proinsulin demonstrated a significant prolongation after treatment with IL-1β. We conclude that a sustained functional stimulation by glucose of islets is coupled to a decreased conversion of proinsulin which is also true for islets treated with IL-1β. This may contribute to the elevated levels of proinsulin found both at the onset of type 1 diabetes as well as in type 2 diabetes.

Free access

Wang-Yang Xu, Yan Shen, Houbao Zhu, Junhui Gao, Chen Zhang, Lingyun Tang, Shun-Yuan Lu, Chun-Ling Shen, Hong-Xin Zhang, Ziwei Li, Peng Meng, Ying-Han Wan, Jian Fei, and Zhu-Gang Wang

Obesity and type 2 diabetes (T2D) are both complicated endocrine disorders resulting from an interaction between multiple predisposing genes and environmental triggers, while diet and exercise have key influence on metabolic disorders. Previous reports demonstrated that 2-aminoadipic acid (2-AAA), an intermediate metabolite of lysine metabolism, could modulate insulin secretion and predict T2D, suggesting the role of 2-AAA in glycolipid metabolism. Here, we showed that treatment of diet-induced obesity (DIO) mice with 2-AAA significantly reduced body weight, decreased fat accumulation and lowered fasting glucose. Furthermore, Dhtkd1−/− mice, in which the substrate of DHTKD1 2-AAA increased to a significant high level, were resistant to DIO and obesity-related insulin resistance. Further study showed that 2-AAA induced higher energy expenditure due to increased adipocyte thermogenesis via upregulating PGC1α and UCP1 mediated by β3AR activation, and stimulated lipolysis depending on enhanced expression of hormone-sensitive lipase (HSL) through activating β3AR signaling. Moreover, 2-AAA could alleviate the diabetic symptoms of db/db mice. Our data showed that 2-AAA played an important role in regulating glycolipid metabolism independent of diet and exercise, implying that improving the level of 2-AAA in vivo could be developed as a strategy in the treatment of obesity or diabetes.

Free access

Hong Liu, Jian Guo, Lin Wang, Ning Chen, Andrew Karaplis, David Goltzman, and Dengshun Miao

To assess the roles of 1,25-dihydroxyvitamin D (1,25(OH)2D) and parathyroid hormone (PTH) in hard tissue formation in oro-facial tissues, we examined the effect of either 1,25(OH)2D or PTH deficiency on dentin and dental alveolar bone formation and mineralization in the mandibles, and osteoblastic bone formation in long bones of 1α-hydroxylase knockout (1α(OH)ase−/−) mice. Compared with wild-type mice, the mineral density was decreased in the teeth and mandibles, and unmineralized dentin (predentin and biglycan immunopositive dentin) and unmineralized bone matrix in the dental alveolar bone were increased in 1α(OH)ase−/− mice. The dental volume, reparative dentin volume, and dentin sialoprotein immunopositive areas were reduced in 1α(OH)ase−/− mice. The cortical thickness, dental alveolar bone volume, and osteoblast number were all decreased significantly in the mandibles; in contrast, the osteoblast number and surface were increased in the trabecular bone of the tibiae in 1α(OH)ase−/− mice consistent with their secondary hyperparathyroidism. The expression of PTH receptor and IGF1 was reduced slightly in mandibles, but enhanced significantly in the long bones in the 1α(OH)ase−/− mice. To control for the role of secondary hyperparathyroidism, we also examined teeth and mandibles in 6-week-old PTH−/− mice. In these animals, dental and bone volumes in mandibles were not altered when compared with their wild-type littermates. These results suggest that 1,25(OH)2D3 plays an anabolic role in both dentin and dental alveolar bone as it does in long bones, whereas PTH acts predominantly in long bones rather than mandibular bone.

Free access

Jennifer A Crookshank, Daniel Serrano, Gen-Sheng Wang, Christopher Patrick, Baylie S Morgan, Marie-France Paré, and Fraser W Scott

It is unknown whether there is a gene signature in pancreas which is associated with type 1 diabetes (T1D). We performed partial pancreatectomies on 30-day preinsulitic, diabetes-prone BioBreeding (BBdp) rats to prospectively identify factors involved in early prediabetes. Microarrays of the biopsies revealed downregulation of endoplasmic reticulum (ER) stress, metabolism and apoptosis. Based on these results, additional investigations compared gene expression in control (BBc) and BBdp rats age ~8, 30 and 60 days using RT-qPCR. Neonates had increased ER stress gene expression in pancreas. This was associated with decreased insulin, cleaved caspase-3 and Ins1 whereas Gcg and Pcsk2 were increased. The increase in ER stress was not sustained at 30 days and decreased by 60 days. In parallel, the liver gene profile showed a similar signature in neonates but with an early decrease of the unfolded protein response (UPR) at 30 days. This suggested that changes in the liver precede those in the pancreas. Tnf and Il1b expression was increased in BBdp pancreas in association with increased caspase-1, cleaved caspase-3 and decreased proinsulin area. Glucagon area was increased in both 30-day and 60-day BBdp rats. Increased colocalization of BIP and proinsulin was observed at 60 days in the pancreas, suggesting insulin-related ER dysfunction. We propose that dysregulated metabolism leads to ER stress in neonatal rats long before insulitis, creating a microenvironment in both pancreas and liver that promotes autoimmunity.

Restricted access

Hamzeh Karimkhanloo, Stacey N Keenan, Emily W Sun, David A Wattchow, Damien J Keating, Magdalene K Montgomery, and Matthew J. Watt

Cathepsin S (CTSS) is a cysteine protease that regulates many physiological processes and is increased in obesity and type 2 diabetes. While previous studies show that deletion of CTSS improves glycemic control through suppression of hepatic glucose output, little is known about the role of circulating CTSS in regulating glucose and energy metabolism. We assessed the effects of recombinant CTSS on metabolism in cultured hepatocytes, myotubes and adipocytes, and in mice following acute CTSS administration. CTSS improved glucose tolerance in lean mice and this coincided with increased plasma insulin. CTSS reduced G6pc and Pck1 mRNA expression and glucose output from hepatocytes but did not affect glucose metabolism in myotubes or adipocytes. CTSS did not affect insulin secretion from pancreatic beta-cells, rather CTSS stimulated glucagon-like peptide (GLP)-1 secretion from intestinal mucosal tissues. CTSS retained its positive effects on glycemic control in mice injected the GLP-1 receptor antagonist exendin (9-39) amide. The effects of CTSS on glycemic control were not retained in high-fat fed mice or db/db mice, despite the preservation of CTSS’ inhibitory actions on hepatic glucose output in isolated primary hepatocytes. In conclusion, we unveil a role for CTSS in the regulation of glycemic control via direct effects on hepatocytes, and that these effects on glycemic control are abrogated in insulin resistant states.