Search Results

You are looking at 61 - 70 of 3,583 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
  • All content x
Clear All Modify Search
Restricted access

P S Leung, H C Chan, L X M Fu, and P Y D Wong

Abstract

Previous studies have demonstrated the existence of several key components of the renin–angiotensin system in the pancreas. In the present study, the localization of angiotensin II receptor subtypes, type I (AT1) and type II (AT2), in the mouse and the rat pancreas was studied by immunocytochemistry using specific antipeptide antibodies against the second extracellular loops of AT1 and AT2 receptors in conjunction with confocal laser scanning microscopy. In the mouse, immunoreactivity for AT1 and AT2 was observed predominantly in the endothelia of the blood vessels and the epithelia of the pancreatic ductal system. Similar distribution of immunoreactivity for AT1 and AT2 was also observed. However, the intensity of immunoreactivity for AT1 and AT2 was stronger in the rat than that found in the mouse pancreas. Much weaker immunostaining for both AT1 and AT2, as compared with that found in ductal regions, was also found in the acini of the rodent pancreas. Together with the previous findings, the present results suggest that AT1 and/or AT2 receptors may play a role in regulating pancreatic functions in the rodent.

Journal of Endocrinology (1997) 153, 269–274

Free access

Guillaume Mabilleau, Marie Pereira, and Chantal Chenu

Type 2 diabetes mellitus (T2DM) leads to bone fragility and predisposes to increased risk of fracture, poor bone healing and other skeletal complications. In addition, some anti-diabetic therapies for T2DM can have notable detrimental skeletal effects. Thus, an appropriate therapeutic strategy for T2DM should not only be effective in re-establishing good glycaemic control but also in minimising skeletal complications. There is increasing evidence that glucagon-like peptide-1 receptor agonists (GLP-1RAs), now greatly prescribed for the treatment of T2DM, have beneficial skeletal effects although the underlying mechanisms are not completely understood. This review provides an overview of the direct and indirect effects of GLP-1RAs on bone physiology, focusing on bone quality and novel mechanisms of action on the vasculature and hormonal regulation. The overall experimental studies indicate significant positive skeletal effects of GLP-1RAs on bone quality and strength although their mechanisms of actions may differ according to various GLP-1RAs and clinical studies supporting their bone protective effects are still lacking. The possibility that GLP-1RAs could improve blood supply to bone, which is essential for skeletal health, is of major interest and suggests that GLP-1 anti-diabetic therapy could benefit the rising number of elderly T2DM patients with osteoporosis and high fracture risk.

Free access

Hongbin Liu, Yunshan Hu, Richard W Simpson, and Anthony E Dear

Glucagon-like peptide-1 (GLP-1) has been proposed as a target for treatment of type 2 diabetes. GLP-1 has also been demonstrated to improve endothelial cell dysfunction in diabetic patients. Elevated plasmogen activator inhibitor-1 (PAI-1) levels have been implicated in endothelial cell dysfunction. The effect of GLP-1 on PAI-1 expression in vascular endothelial cells has not been explored. In a spontaneously transformed human umbilical vein endothelial cell (HUVEC) line, C11-spontaneously transformed HUVEC (STH) and primary HUVEC cells, GLP-1 treatment, in the presence of a dipeptidyl peptidase IV inhibitor, attenuated induction of PAI-1 protein and mRNA expression by tumour necrosis factor-α (TNF-α). GLP-1 also inhibited the effect of TNF-α on a reporter gene construct harbouring the proximal PAI-1 promoter. In addition, GLP-1 attenuated TNF-α-mediated induction of Nur77 mRNA and TNF-α-mediated binding of nuclear proteins (NPs) to the PAI-1, Nur77, cis-acting response element nerve growth factor induced clone B response element (NBRE). GLP-1 treatment also inhibited TNF-α-mediated induction of Akt phosphorylation. Taken together, these observations suggest that GLP-1 inhibits TNF-α-mediated PAI-1 induction in vascular endothelial cells, and this effect may involve Akt-mediated signalling events and the modulation of Nur77 expression and NP binding to the PAI-1 NBRE.

Free access

Isabel Göhring and Hindrik Mulder

In this issue of Journal of Endocrinology, Dr Han and colleagues report a protective effect of the glutamate dehydrogenase activator 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) under diabetes-like conditions that impair β-cell function in both a pancreatic β-cell line and db/db mice. Based on these observations, the authors suggest that BCH could serve as a novel treatment modality in type 2 diabetes. The present commentary discusses the importance of the findings. Some additional questions are raised, which may be addressed in future investigations, as there is some concern regarding the BCH treatment of β-cell failure.

Free access

Yuichiro Takeuchi, Keishi Yamauchi, Junko Nakamura, Satoshi Shigematsu, and Kiyoshi Hashizume

The biological effects of angiotensin II (AngII) are mediated by two major subtypes of AngII receptors, type 1 (AT1R) and type 2 (AT2R). In this study, we attempted to elucidate the role of AngII subtype receptor-specific regulation in migration and proliferation of mouse cultured mesangial (MSG) cells. We found that 100 nM AngII stimulated weak migration of MSG cells. Cell motility increased more in the presence of AT2R than in the presence of AT1R, and it was suppressed by guanylate cyclase inhibitors. On the other hand, the activation of AT1R resulted in increased cell numbers, while AT2R activation inhibited cell proliferation. Moreover, high concentrations of glucose (25 mM) stimulated the expression of AT2R but not AT1R. These results indicate that there are receptor subtype-specific roles in MSG cells, and it is therefore possible that the activation of AT2R stimulates repair of glomerular tissue defect, by regulation of migration and proliferation of MSG cells. Taken together, these results suggest that the relative concentrations of AT1R and AT2R are important factors in the regulation of AngII function in glomerular tissue, and alterations in the concentrations of these receptors may contribute to progression of or protection from diabetic nephropathy.

Free access

James E Bowe, Zara J Franklin, Astrid C Hauge-Evans, Aileen J King, Shanta J Persaud, and Peter M Jones

The pathophysiology of diabetes as a disease is characterised by an inability to maintain normal glucose homeostasis. In type 1 diabetes, this is due to autoimmune destruction of the pancreatic β-cells and subsequent lack of insulin production, and in type 2 diabetes it is due to a combination of both insulin resistance and an inability of the β-cells to compensate adequately with increased insulin release. Animal models, in particular genetically modified mice, are increasingly being used to elucidate the mechanisms underlying both type 1 and type 2 diabetes, and as such the ability to study glucose homeostasis in vivo has become an essential tool. Several techniques exist for measuring different aspects of glucose tolerance and each of these methods has distinct advantages and disadvantages. Thus the appropriate methodology may vary from study to study depending on the desired end-points, the animal model, and other practical considerations. This review outlines the most commonly used techniques for assessing glucose tolerance in rodents and details the factors that should be taken into account in their use. Representative scenarios illustrating some of the practical considerations of designing in vivo experiments for the measurement of glucose homeostasis are also discussed.

Open access

Tingting Yang, Min He, Hailiang Zhang, Paula Q Barrett, and Changlong Hu

Aldosterone, which plays a key role in the regulation of blood pressure, is produced by zona glomerulosa (ZG) cells of the adrenal cortex. Exaggerated overproduction of aldosterone from ZG cells causes primary hyperaldosteronism. In ZG cells, calcium entry through voltage-gated calcium channels plays a central role in the regulation of aldosterone secretion. Previous studies in animal adrenals and human adrenal adrenocortical cell lines suggest that the T-type but not the L-type calcium channel activity drives aldosterone production. However, recent clinical studies show that somatic mutations in L-type calcium channels are the second most prevalent cause of aldosterone-producing adenoma. Our objective was to define the roles of T and L-type calcium channels in regulating aldosterone secretion from human adrenals. We find that human adrenal ZG cells mainly express T-type CaV3.2/3.3 and L-type CaV1.2/1.3 calcium channels. TTA-P2, a specific inhibitor of T-type calcium channel subtypes, reduced basal aldosterone secretion from acutely prepared slices of human adrenals. Surprisingly, nifedipine, the prototypic inhibitor of L-type calcium channels, also decreased basal aldosterone secretion, suggesting that L-type calcium channels are active under basal conditions. In addition, TTA-P2 or nifedipine also inhibited aldosterone secretion stimulated by angiotensin II- or elevations in extracellular K+. Remarkably, blockade of either L- or T-type calcium channels inhibits basal and stimulated aldosterone production to a similar extent. Low concentrations of TTA-P2 and nifedipine showed additive inhibitory effect on aldosterone secretion. We conclude that T- and L-type calcium channels play equally important roles in controlling aldosterone production from human adrenals.

Free access

Haiyong Chen, Hui-Yao Lan, Dimitrios H Roukos, and William C Cho

MicroRNAs (miRNAs) are small molecules negatively regulating gene expression by diminishing their target mRNAs. Emerging studies have shown that miRNAs play diverse roles in diabetes mellitus. Type 1 diabetes (T1D) and T2D are two major types of diabetes. T1D is characterized by a reduction in insulin release from the pancreatic β-cells, while T2D is caused by islet β-cell dysfunction in response to insulin resistance. This review describes the miRNAs that control insulin release and production by regulating cellular membrane electrical excitability (ATP:ADP ratio), insulin granule exocytosis, insulin synthesis in β-cells, and β-cell fate and islet mass formation. This review also examines miRNAs involved the insulin resistance of liver, fat, and skeletal muscle, which change insulin sensitivity pathways (insulin receptors, glucose transporter type 4, and protein kinase B pathways). This review discusses the potential application of miRNAs in diabetes, including the use of gene therapy and therapeutic compounds to recover miRNA function in diabetes, as well as the role of miRNAs as potential biomarkers for T1D and T2D.

Free access

Lucy M Hinder, Anuradha Vivekanandan-Giri, Lisa L McLean, Subramaniam Pennathur, and Eva L Feldman

Diabetic neuropathy (DN) is the most common complication of diabetes and is characterized by distal-to-proximal loss of peripheral nerve axons. The idea of tissue-specific pathological alterations in energy metabolism in diabetic complications-prone tissues is emerging. Altered nerve metabolism in type 1 diabetes models is observed; however, therapeutic strategies based on these models offer limited efficacy to type 2 diabetic patients with DN. Therefore, understanding how peripheral nerves metabolically adapt to the unique type 2 diabetic environment is critical to develop disease-modifying treatments. In the current study, we utilized targeted liquid chromatography–tandem mass spectrometry (LC/MS/MS) to characterize the glycolytic and tricarboxylic acid (TCA) cycle metabolomes in sural nerve, sciatic nerve, and dorsal root ganglia (DRG) from male type 2 diabetic mice (BKS.Cg-m+/+Leprdb; db/db) and controls (db/+). We report depletion of glycolytic intermediates in diabetic sural nerve and sciatic nerve (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate (sural nerve only), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and lactate), with no significant changes in DRG. Citrate and isocitrate TCA cycle intermediates were decreased in sural nerve, sciatic nerve, and DRG from diabetic mice. Utilizing LC/electrospray ionization/MS/MS and HPLC methods, we also observed increased protein and lipid oxidation (nitrotyrosine; hydroxyoctadecadienoic acids) in db/db tissue, with a proximal-to-distal increase in oxidative stress, with associated decreased aconitase enzyme activity. We propose a preliminary model, whereby the greater change in metabolomic profile, increase in oxidative stress, and decrease in TCA cycle enzyme activity may cause distal peripheral nerves to rely on truncated TCA cycle metabolism in the type 2 diabetes environment.

Free access

Neville H McClenaghan, Peter R Flatt, and Andrew J Ball

This study examined the effects of glucagon-like peptide-1 (GLP-1) on insulin secretion alone and in combination with sulphonylureas or nateglinide, with particular attention to KATP channel-independent insulin secretion. In depolarised cells, GLP-1 significantly augmented glucose-induced KATP channel-independent insulin secretion in a glucose concentration-dependent manner. GLP-1 similarly augmented the KATP channel-independent insulin-releasing effects of tolbutamide, glibenclamide or nateglinide. Downregulation of protein kinase A (PKA)- or protein kinase C (PKC)-signalling pathways in culture revealed that the KATP channel-independent effects of sulphonylureas or nateglinide were critically dependent upon intact PKA and PKC signalling. In contrast, GLP-1 exhibited a reduced but still significant insulin-releasing effect following PKA and PKC downregulation, indicating that GLP-1 can modulate KATP channel-independent insulin secretion by protein kinase-dependent and -independent mechanisms. The synergistic insulin-releasing effects of combinatorial GLP-1 and sulphonylurea/nateglinide were lost following PKA- or PKC-desensitisation, despite GLP-1 retaining an insulin-releasing effect, demonstrating that GLP-1 can induce insulin release under conditions where sulphonylureas and nateglinide are no longer effective. Our results provide new insights into the mechanisms of action of GLP-1, and further highlight the promise of GLP-1 or similarly acting analogues alone or in combination with sulphonylureas or meglitinide drugs in type 2 diabetes therapy.