Search Results

You are looking at 71 - 80 of 3,584 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
  • All content x
Clear All Modify Search
Free access

M Nasu, T Sugimoto, H Kaji, and K Chihara

Although there is clinical evidence showing that combined therapy with parathyroid hormone (PTH) and estrogen is additively effective in increasing the bone mass of patients with osteoporosis, the mechanism of the interaction between these hormones remains unclear. The present study was performed to determine whether estrogen would affect osteoblast proliferation and function modulated by PTH in human osteoblastic SaOS-2 cells. Human PTH-(1-34) significantly inhibited [(3)H]thymidine (TdR) incorporation, which was attenuated by 24 h pretreatment with 10(-10) to 10(-7) M 17 beta-estradiol (17 beta-E(2)) in a concentration-dependent manner. PTH significantly stimulated alkaline phosphatase (ALP) activity, collagen synthesis and type-1 procollagen mRNA expression after pretreatment with 17 beta-E(2 )in these cells. Tamoxifen, an anti-estrogen, antagonized these 17 beta-E(2)-induced effects. Pretreatment with insulin-like growth factor-I (IGF-I) mimicked estrogen action, and coincubation of 3 microg/ml anti-IGF-I antibody antagonized the effects of 17 beta-E(2 )as well as those of IGF-I. In the presence of 17 beta-E(2 )pretreatment, PTH strongly stimulated IGF-binding protein (IGFBP)-5 mRNA expression in these cells, and recombinant IGFBP-5 increased type-1 procollagen mRNA expression and ALP activity. In conclusion, estrogen attenuates PTH-induced inhibition of osteoblast proliferation and PTH stimulates osteoblast function in the presence of estrogen pretreatment. IGF-I and/or IGFBP-5 seemed to be involved in the estrogen-induced modulation of PTH action on osteoblast proliferation and function.

Free access

GW Aberdeen, GJ Pepe, and ED Albrecht

In the present study, we determined whether expression of the messenger ribonucleic acids (mRNAs) for insulin-like growth factor-II (IGF-II), and its principal IGF type-1 receptor and IGF-binding protein-2 (IGFBP-2), as well as basic fibroblast growth factor (bFGF), was developmentally regulated in the baboon fetal adrenal gland. In the second phase of this study, fetal pituitary ACTH was suppressed by the administration of betamethasone to determine the possible effect on the mRNA levels for those factors, i.e. IGF-II and IGFBP-2, shown to be expressed at high levels in the adrenal late in fetal development. Adrenals were obtained from fetuses delivered via Cesarean section on days 60 (early), 100 (mid), and 165 (late) of gestation (term=184 days) from untreated baboons and on day 165 from baboons in which betamethasone was administered to the fetus, or to fetus and mother, every other day between days 150 and 164 of gestation. Although the mRNA levels of IGF-II in the fetal adrenal were similar at early, mid and late gestation, IGF type-1 receptor mRNA levels were approximately 2- to 3-fold greater (P<0.01) at mid than at early or late gestation. In contrast, there was an increase (P<0.001) in fetal adrenal IGFBP-2 and bFGF mRNA levels in late gestation. Although fetal adrenal weights and width of the zone of definitive/transitional cells exhibiting immunocytochemical staining for Delta(5)-3beta-hydroxysteroid dehydrogenase (3beta-HSD) were markedly suppressed (P<0.01) by the administration of betamethasone, IGF-II and IGFBP-2 mRNA expression was not decreased. In summary, very different patterns of mRNA levels for IGF-II, IGF type-1 receptor, IGFBP-2 and bFGF were exhibited in the developing baboon fetal adrenal gland, which may reflect functionally important differences in their respective cellular localization within the cortex, as well as a divergence in the functional development of the fetal, transitional and definitive zones of the baboon fetal adrenal cortex.

Restricted access

Qiaoli Cui, Yijing Liao, Yaojing Jiang, Xiaohang Huang, Weihong Tao, Quanquan Zhou, Anna Shao, Ying Zhao, Jia Li, Anran Ma, Zhihong Wang, Li Zhang, Zunyuan Yang, Yinan Liang, Minglin Wu, Zhenyan Yang, Wen Zeng, and Qinghua Wang

Glucagon-like peptide 1 (GLP-1) is an insulinotropic hormone and plays an important role in regulating glucose homeostasis. GLP-1 has a short half-life (t1/2<2 min) due to degrading enzyme dipeptidyl peptidase-IV and rapid kidney clearance, which limits its clinical application as a therapeutic reagent. We demonstrated recently that supaglutide, a novel GLP-1 mimetic generated by recombinant fusion protein techniques, exerted hypoglycemic and beta cell trophic effects in type 2 diabetes db/db mice. In the present study, we examined supaglutide’s therapeutic efficacy and pharmacokinetics in diabetic rhesus monkeys. We found that a single subcutaneous injection of supaglutide of tested doses transiently and significantly reduced blood glucose levels in a dose-dependent fashion in the diabetic monkeys. During a 4-weeks intervention period, treatment of supaglutide of weekly dosing dose-dependently decreased fasting and random blood glucose levels. This was associated with significantly declined plasma fructosamine levels. The repeated administration of supaglutide remarkably also decreased body weight in a dose-dependent fashion accompanied by decreased food intake. Intravenous glucose tolerance test results showed that supaglutide improved glucose tolerance. The intervention also showed enhanced glucose-stimulated insulin secretion and improved lipid profile in diabetic rhesus monkeys. These results reveal that supaglutide exerts beneficial effects in regulating blood glucose and lipid homeostasis in diabetic rhesus monkeys.

Free access

Bernard Khoo and Tricia Mei-Mei Tan

Obesity represents an important public health challenge for the twenty-first century: globalised, highly prevalent and increasingly common with time, this condition is likely to reverse some of the hard-won gains in mortality accomplished in previous centuries. In the search for safe and effective therapies for obesity and its companion, type 2 diabetes mellitus (T2D), the gut hormone glucagon-like peptide-1 (GLP-1) has emerged as a forerunner and analogues thereof are now widely used in treatment of obesity and T2D, bringing proven benefits in improving glycaemia and weight loss and, notably, cardiovascular outcomes. However, GLP-1 alone is subject to limitations in terms of efficacy, and as a result, investigators are evaluating other gut hormones such as glucose-dependent insulinotropic peptide (GIP), glucagon and peptide YY (PYY) as possible partner hormones that may complement and enhance GLP-1’s therapeutic effects. Such combination gut hormone therapies are in pharmaceutical development at present and are likely to make it to market within the next few years. This review examines the physiological basis for combination gut hormone therapy and presents the latest clinical results that underpin the excitement around these treatments. We also pose, however, some hard questions for the field which need to be answered before the full benefit of such treatments can be realised.

Free access

Tao Xie, Min Chen, and Lee S Weinstein

The ubiquitously expressed G protein α-subunit Gsα mediates the intracellular cAMP response to glucagon-like peptide 1 (GLP1) and other incretin hormones in pancreatic islet cells. We have shown previously that mice with β-cell-specific Gsα deficiency (βGsKO) develop severe early-onset insulin-deficient diabetes with a severe defect in β-cell proliferation. We have now generated mice with Gsα deficiency throughout the whole pancreas by mating Gsα-floxed mice with Pdx1-cre transgenic mice (PGsKO). PGsKO mice also developed severe insulin-deficient diabetes at a young age, confirming the important role of Gsα signaling in β-cell growth and function. Unlike in βGsKO mice, islets in PGsKO mice had a relatively greater proportion of α-cells, which were spread throughout the interior of the islet. Similar findings were observed in mice with pancreatic islet cell-specific Gsα deficiency using a neurogenin 3 promoter-cre recombinase transgenic mouse line. Studies in the α-cell line αTC1 confirmed that reduced cAMP signaling increased cell proliferation while increasing cAMP produced the opposite effect. Therefore, it appears that Gsα/cAMP signaling has opposite effects on pancreatic α- and β-cell proliferation, and that impaired GLP1 action in α- and β-cells via Gsα signaling may be an important contributor to the reciprocal effects on insulin and glucagon observed in type 2 diabetics. In addition, PGsKO mice show morphological changes in exocrine pancreas and evidence for malnutrition and dehydration, indicating an important role for Gsα in the exocrine pancreas as well.

Free access

WW Lin and AM Oberbauer

IGF-I acts as a local proliferation and maturation factor for chondrocytes in the growth plate. However, the expression of different alternative IGF-I mRNA classes in the growth plate has not been characterized. Using quantitative reverse transcription PCR, the abundance of each alternative IGF-I mRNA class in resting, proliferative and hypertrophic chondrocytes was measured in rat costochondral growth plates. Class 1Ea mRNA was the most abundant IGF-I transcript overall and was highly expressed in proliferative chondrocytes at 2 and 4 weeks of age; by 6 weeks, the majority of 1Ea mRNA expression had shifted to hypertrophic chondrocytes. Class 1Eb mRNA was the second most abundant transcript and its distribution was uniform across all the cell types at 2 weeks of age. The expression pattern changed with increasing age such that at 6 weeks a gradient existed with hypertrophic chondrocytes expressing higher levels of 1Eb than resting chondrocytes. Class 2Ea mRNA was constitutively expressed at low levels across the growth plate at all ages, while class 2Eb mRNA expression was negligible. The distribution of total IGF-I mRNA also shifted across growth plate cell types as the animals aged from 2 to 6 weeks. These findings suggest that IGF-I class 1 mRNA plays the predominant role in the maturation of the growth plate.

Restricted access

M G Cavallo, F Dotta, L Monetini, S Dionisi, M Previti, L Valente, A Toto, U Di Mario, and P Pozzilli


In the present study we have evaluated the expression of different beta-cell markers, islet molecules and autoantigens relevant in diabetes autoimmunity by a human insulinoma cell line (CM) in order to define its similarities with native beta cells and to discover whether it could be considered as a model for studies on immunological aspects of Type 1 diabetes.

First, the positivity of the CM cell line for known markers of neuroendocrine derivation was determined by means of immunocytochemical analysis using different anti-islet monoclonal antibodies including A2B5 and 3G5 reacting with islet gangliosides, and HISL19 binding to an islet glycoprotein. Secondly, the expression and characteristics of glutamic acid decarboxylase (GAD) and of GM2-1 ganglioside, both known to be islet autoantigens in diabetes autoimmunity and expressed by human native beta cells, were investigated in the CM cell line. The pattern of ganglioside expression in comparison to that of native beta cells was also evaluated. Thirdly, the binding of diabetic sera to CM cells reacting with islet cytoplasmic antigens (ICA) was studied by immunohistochemistry. The results of this study showed that beta cell markers identified by anti-islet monoclonal antibodies A2B5, 3G5 and HISL-19 are expressed by CM cells; similarly, islet molecules such as GAD and GM2-1 ganglioside are present and possess similar characteristics to those found in native beta cells; the pattern of expression of other gangliosides by CM cells is also identical to human pancreatic islets; beta cell autoantigen(s) reacting with antibodies present in islet cell antibodies (ICA) positive diabetic sera identified by ICA binding are also detectable in this insulinoma cell line.

We conclude that CM cells show close similarities to native beta cells with respect to the expression of neuroendocrine markers, relevant beta cell autoantigens in Type 1 diabetes (GAD, GM2-1, ICA antigen), and other gangliosides. Therefore, this insulinoma cell line may be considered as an ideal model for studies aimed at investigating autoimmune phenomena occurring in Type 1 diabetes.

Journal of Endocrinology (1996) 150, 113–120

Restricted access

D. Janjic and M. Asfari


To investigate further the role of cytokines in the pathogenesis of type I insulin-dependent diabetes mellitus, the effects of interleukin-1β (IL-1), tumour necrosis factor-α (TNF) and γ-interferon (IFN) were tested on rat insulinoma INS-1 cells. Whereas TNF and IFN had, respectively, a minor or no effect on insulin production, IL-1 caused a time- and dose-dependent decrease in insulin release and lowered the insulin content as well as the preproinsulin mRNA content of INS-1 cells. Both IL-1 and TNF exerted a cytostatic effect, estimated by a decrease in [3H]thymidine incorporation, while only IL-1 decreased cell viability as measured by the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test.

The glutathione content of INS-1 cells was shown to be modulated by the presence of 2-mercaptoethanol in the culture medium, but was not affected by IL-1 or TNF.

In conclusion, INS-1 cell culture is considered to be a useful model for studying the effect of cytokines on insulin-producing cells. The differentiated features of these cells will permit several questions to be addressed regarding the mechanism of action of IL-1 and eventually other cytokines, both at the level of gene expression and of intracellular signalling.

Journal of Endocrinology (1992) 132, 67–76

Free access

Zhengu Liu, Violeta Stanojevic, Luke J Brindamour, and Joel F Habener

Type 2 diabetes, often associated with obesity, results from a deficiency of insulin production and action manifested in increased blood levels of glucose and lipids that further promote insulin resistance and impair insulin secretion. Glucolipotoxicity caused by elevated plasma glucose and lipid levels is a major cause of impaired glucose-stimulated insulin secretion from pancreatic β-cells, due to increased oxidative stress, and insulin resistance. Glucagon-like peptide-1 (GLP1), an insulinotropic glucoincretin hormone, is known to promote β-cell survival via its actions on its G-protein-coupled receptor on β-cells. Here, we report that a nonapeptide, GLP1(28–36)amide, derived from the C-terminal domain of the insulinotropic GLP1, exerts cytoprotective actions on INS-1 β-cells and on dispersed human islet cells in vitro in conditions of glucolipotoxicity and increased oxidative stress independently of the GLP1 receptor. The nonapeptide appears to enter preferably stressed, glucolipotoxic cells compared with normal unstressed cells. It targets mitochondria and improves impaired mitochondrial membrane potential, increases cellular ATP levels, inhibits cytochrome c release, caspase activation, and apoptosis, and enhances the viability and survival of INS-1 β-cells. We propose that GLP1(28–36)amide might be useful in alleviating β-cell stress and might improve β-cell functions and survival.

Free access

H Del Zotto, L Massa, R Rafaeloff, GL Pittenger, A Vinik, G Gold, A Reifel-Miller, and JJ Gagliardino

The possible relationship between changes in islet cell mass and in islet neogenesis-associated protein (INGAP)-cell mass induced by sucrose administration to normal hamsters was investigated. Normal hamsters were given sucrose (10% in drinking water) for 5 (S8) or 21 (S24) weeks and compared with control (C) fed hamsters. Serum glucose and insulin levels were measured and quantitative immunocytochemistry of the endocrine pancreas was performed. Serum glucose levels were comparable among the groups, while insulin levels were higher in S hamsters. There was a significant increase in beta-cell mass (P<0.02) and in beta-cell 5-bromo-2'-deoxyuridine index (P<0.01), and a significant decrease in islet volume (P<0.01) only in S8 vs C8 hamsters. Cytokeratin (CK)-labelled cells were detected only in S8 hamsters. INGAP-positive cell mass was significantly larger only in S8 vs C8 hamsters. Endocrine INGAP-positive cells were located at the islet periphery ( approximately 96%), spread within the exocrine pancreas ( approximately 3%), and in ductal cells (<1%) in all groups. INGAP positivity and glucagon co-localization varied according to topographic location and type of treatment. In C8 hamsters, 49.1+/-6. 9% cells were INGAP- and glucagon-positive in the islets, while this percentage decreased by almost half in endocrine extra-insular and ductal cells. In S8 animals, co-expression increased in endocrine extra-insular cells to 36.3+/-9.5%, with similar figures in the islets, decreasing to 19.7+/-6.9% in ductal cells. INGAP-positive cells located at the islet periphery also co-expressed CK. In conclusion, a significant increase of INGAP-positive cell mass was only observed at 8 weeks when neogenesis was present, suggesting that this peptide might participate in the control of islet neogenesis. Thus, INGAP could be a potentially useful tool to treat conditions in which there is a decrease in beta-cell mass.