Search Results

You are looking at 101 - 110 of 3,722 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
  • All content x
Clear All Modify Search
Free access

Thangiah Geetha, Paul Langlais, Michael Caruso, and Zhengping Yi

Skeletal muscle insulin resistance is an early abnormality in individuals with metabolic syndrome and type 2 diabetes (T2D). Insulin receptor substrate-1 (IRS1) plays a key role in insulin signaling, the function of which is regulated by both phosphorylation and dephosphorylation of tyrosine and serine/threonine residues. Numerous studies have focused on kinases in IRS1 phosphorylation and insulin resistance; however, the mechanism for serine/threonine phosphatase action in insulin signaling is largely unknown. Recently, we identified protein phosphatase 1 (PP1) regulatory subunit 12A (PPP1R12A) as a novel endogenous insulin-stimulated interaction partner of IRS1 in L6 myotubes. The current study was undertaken to better understand PPP1R12A's role in insulin signaling. Insulin stimulation promoted an interaction between the IRS1/p85 complex and PPP1R12A; however, p85 and PPP1R12A did not interact independent of IRS1. Moreover, kinase inhibition experiments indicated that insulin-induced interaction between IRS1 and PPP1R12A was reduced by treatment with inhibitors of phosphatidylinositide 3 kinase, PDK1, Akt, and mTOR/raptor but not MAPK. Furthermore, a novel insulin-stimulated IRS1 interaction partner, PP1 catalytic subunit (PP1cδ), was identified, and its interaction with IRS1 was also disrupted by inhibitors of Akt and mTOR/raptor. These results indicate that PPP1R12A and PP1cδ are new members of the insulin-stimulated IRS1 signaling complex, and the interaction of PPP1R12A and PP1cδ with IRS1 is dependent on Akt and mTOR/raptor activation. These findings provide evidence for the involvement of a particular PP1 complex, PPP1R12A/PP1cδ, in insulin signaling and may lead to a better understanding of dysregulated IRS1 phosphorylation in insulin resistance and T2D.

Free access

Gordon Moody, Pedro J Beltran, Petia Mitchell, Elaina Cajulis, Young-Ah Chung, David Hwang, Richard Kendall, Robert Radinsky, Pinchas Cohen, and Frank J Calzone

Ganitumab is a fully human MAB to the human type 1 IGF receptor (IGF1R). Binding assays showed that ganitumab recognized murine IGF1R with sub-nanomolar affinity (K D=0.22 nM) and inhibited the interaction of murine IGF1R with IGF1 and IGF2. Ganitumab inhibited IGF1-induced activation of IGF1R in murine lungs and CT26 murine colon carcinoma cells and tumors. Addition of ganitumab to 5-fluorouracil resulted in enhanced inhibition of tumor growth in the CT26 model. Pharmacological intervention with ganitumab in naïve nude mice resulted in a number of physiological changes described previously in animals with targeted deletions of Igf1 and Igf1r, including inhibition of weight gain, reduced glucose tolerance and significant increase in serum levels of GH, IGF1 and IGFBP3. Flow cytometric analysis identified GR1/CD11b-positive cells as the highest IGF1R-expressing cells in murine peripheral blood. Administration of ganitumab led to a dose-dependent, reversible decrease in the number of peripheral neutrophils with no effect on erythrocytes or platelets. These findings indicate that acute IGF availability for its receptor plays a critical role in physiological growth, glucose metabolism and neutrophil physiology and support the presence of a pituitary IGF1R-driven negative feedback loop that tightly regulates serum IGF1 levels through Gh signaling.

Restricted access

Ziping Jiang, Junduo Wu, Fuzhe Ma, Jun Jiang, Linlin Xu, Lei Du, Wenlin Huang, Zhaohui Wang, Ye Jia, Laijin Lu, and Hao Wu

Over a half of the diabetic individuals develop macrovascular complications that cause high mortality. Oxidative stress (OS) promotes endothelial dysfunction (ED) which is a critical early step toward diabetic macrovascular complications. Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system and combats diabetes-induced OS. Previously, we found that impaired NRF2 antioxidant signaling contributed to diabetes-induced endothelial OS and dysfunction in mice. The present study has investigated the effect of microRNA-200a (miR-200a) on NRF2 signaling and diabetic ED. In aortic endothelial cells (ECs) isolated from C57BL/6 wild-type (WT) mice, high glucose (HG) reduced miR-200a levels and increased the expression of kelch-like ECH-associated protein 1 (Keap1) – a target of miR-200a and a negative regulator of NRF2. This led to the inactivation of NRF2 signaling and exacerbation of OS and inflammation. miR-200a mimic (miR-200a-M) or inhibitor modulated KEAP1/NRF2 antioxidant signaling and manipulated OS and inflammation under HG conditions. These effects were completely abolished by knockdown of Keap1, indicating that Keap1 mRNA is a major target of miR-200a. Moreover, the protective effect of miR-200a-M was completely abrogated in aortic ECs isolated from C57BL/6 Nrf2 knockout (KO) mice, demonstrating that NRF2 is required for miR-200a’s actions. In vivo, miR-200a-M inhibited aortic Keap1 expression, activated NRF2 signaling, and attenuated hyperglycemia-induced OS, inflammation and ED in the WT, but not Nrf2 KO, mice. Therefore, the present study has uncovered miR-200a/KEAP1/NRF2 signaling that controls aortic endothelial antioxidant capacity, which protects against diabetic ED.

Free access

Andreas Börjesson and Carina Carlsson

In order to elucidate a possible relationship between β-cell function and conversion of proinsulin to insulin, isolated rat pancreatic islets were maintained in tissue culture for 1 week at various glucose concentrations (5.6–56 mM). Studies were also conducted on islets cultured for 48 h with interleukin-1β (IL-1β). By pulse-chase labelling and immunoprecipitation, the relative contents of newly synthesized proinsulin and insulin were determined. ELISA was used to analyse insulin and proinsulin content in medium and within islets. Using real-time PCR, the mRNA levels of proinsulin converting enzymes (PC1 and PC2) were studied. Islets cultured at 56 mM glucose had an increased proportion of newly synthesized proinsulin when compared with islets cultured at 5.6 mM glucose after a 90-min chase periods, however, no difference was observed after culture at 11 and 28 mM glucose. ELISA measurements revealed that culture at increased glucose concentrations as well as islet exposure to IL-1β increased proinsulin accumulation in the culture media. The mRNA expression of PC1 was increased after culture at 11 and 28 mM glucose. Treatment for 48 h with IL-1β increased the proportion of proinsulin both at 45 and 90 min when compared with control islets. These islets also displayed a decreased mRNA level of PC1 as well as PC2. Calculations of the half-time for proinsulin demonstrated a significant prolongation after treatment with IL-1β. We conclude that a sustained functional stimulation by glucose of islets is coupled to a decreased conversion of proinsulin which is also true for islets treated with IL-1β. This may contribute to the elevated levels of proinsulin found both at the onset of type 1 diabetes as well as in type 2 diabetes.

Restricted access

P. J. Miettinen, T. Otonkoski, and R. Voutilainen

ABSTRACT

To understand the development of the human pancreas better, we studied the expression and regulation of insulin, insulin-like growth factor-II (IGF-II) and transforming growth factor-α (TGF-α) genes in the human fetal pancreas and islet-like cell clusters (ICC) from the second trimester human fetuses. Northern blot analysis revealed an abundant expression of IGF-II, insulin and TGF-α mRNAs in the intact pancreas and the cultured ICCs. Furthermore, transcripts for insulin receptor, type-1 and -2 IGF receptors, and GH receptor could be amplified by polymerase chain reaction analysis from the pancreas and the ICCs. With in-situ hybridization, IGF-II mRNA was found in abundance in both the exocrine and endocrine pancreas, exceeding the amount of insulin mRNA. In ICCs, insulin mRNA-containing cells were present as small clusters in the periphery and in the centre of the clusters corresponding to the immunolocation of insulin. The ICCs also contained many epidermal growth factor-, insulin- and type-1 IGF receptor- and TGF-α-positive cells.

When the ICCs were cultured in the presence of various secretagogues, only dibutyryl cyclic AMP was found to up-regulate insulin mRNA (39%; P < 0·05). IGF-II mRNA was also under cyclic AMP-dependent regulation (threefold increase; P = 0·025). Furthermore, blocking the type-1 IGF receptor with a monoclonal receptor antibody drastically reduced insulin expression (87%; P = 0·005) and additionally down-regulated IGF-II mRNA (49%; P = 0·005). IGF-1, IGF-II, TGF-α or epidermal growth factor-receptor antibody had no significant effect on either insulin or IGF-II mRNA. Exogenous TGF-α inhibited the release of insulin by the ICCs. It was concluded that IGF-II and TGF-α may be involved in the regulation of islet growth and differentiation.

Journal of Endocrinology (1993) 138, 127–136

Free access

A Alidibbiat, C E Marriott, K T Scougall, S C Campbell, G C Huang, W M Macfarlane, and J A M Shaw

Generation of new β-cells from the adult pancreas or the embryonic stem cells is being pursued by research groups worldwide. Success will be dependent on confirmation of true β-cell phenotype evidenced by capacity to process and store proinsulin. The aim of these studies was to robustly determine endocrine characteristics of the AR42J rat pancreatic acinar cell line before and after in vitro transdifferentiation. β-cell phenotypic marker expression was characterised by RT-PCR, immunostaining, western blotting, ELISA and in human preproinsulin transgene over-expression studies in wild-type AR42J cells and after culture on Matrigel basement membrane matrix with and without growth/differentiation factor supplementation. Pancreatic duodenal homeobox 1 (PDX1), forkhead box transcription factor a2 (Foxa2), glucokinase, pancreatic polypeptide and low-level insulin gene transcription in wild-type AR42J cells were confirmed by RT-PCR. Culture on Matrigel-coated plates and supplementation of medium with glucagon-like peptide 1 induced expression of the β-cell Glut 2 with maintained expression of insulin and PDX1. Increased biosynthesis and secretion of proinsulin were confirmed by immunocytochemical staining and sensitive ELISA. Absence of the regulated secretory pathway was demonstrated by undetectable prohormone convertase expression. In addition, inability to process and store endogenous proinsulin or human proinsulin translated from a constitutively over-expressed preproinsulin transgene was confirmed. The importance of robust phenotypic characterisation at the protein level in attempted β-cell transdifferentiation studies has been confirmed. Rodent and human sensitive/specific differential proinsulin/insulin ELISA in combination with human preproinsulin over-expression enables detailed elucidatation of core endocrine functions of proinsulin processing and storage in putative new β-cells.

Free access

Hong Liu, Jian Guo, Lin Wang, Ning Chen, Andrew Karaplis, David Goltzman, and Dengshun Miao

To assess the roles of 1,25-dihydroxyvitamin D (1,25(OH)2D) and parathyroid hormone (PTH) in hard tissue formation in oro-facial tissues, we examined the effect of either 1,25(OH)2D or PTH deficiency on dentin and dental alveolar bone formation and mineralization in the mandibles, and osteoblastic bone formation in long bones of 1α-hydroxylase knockout (1α(OH)ase−/−) mice. Compared with wild-type mice, the mineral density was decreased in the teeth and mandibles, and unmineralized dentin (predentin and biglycan immunopositive dentin) and unmineralized bone matrix in the dental alveolar bone were increased in 1α(OH)ase−/− mice. The dental volume, reparative dentin volume, and dentin sialoprotein immunopositive areas were reduced in 1α(OH)ase−/− mice. The cortical thickness, dental alveolar bone volume, and osteoblast number were all decreased significantly in the mandibles; in contrast, the osteoblast number and surface were increased in the trabecular bone of the tibiae in 1α(OH)ase−/− mice consistent with their secondary hyperparathyroidism. The expression of PTH receptor and IGF1 was reduced slightly in mandibles, but enhanced significantly in the long bones in the 1α(OH)ase−/− mice. To control for the role of secondary hyperparathyroidism, we also examined teeth and mandibles in 6-week-old PTH−/− mice. In these animals, dental and bone volumes in mandibles were not altered when compared with their wild-type littermates. These results suggest that 1,25(OH)2D3 plays an anabolic role in both dentin and dental alveolar bone as it does in long bones, whereas PTH acts predominantly in long bones rather than mandibular bone.

Restricted access

Hamzeh Karimkhanloo, Stacey N Keenan, Emily W Sun, David A Wattchow, Damien J Keating, Magdalene K Montgomery, and Matthew J. Watt

Cathepsin S (CTSS) is a cysteine protease that regulates many physiological processes and is increased in obesity and type 2 diabetes. While previous studies show that deletion of CTSS improves glycemic control through suppression of hepatic glucose output, little is known about the role of circulating CTSS in regulating glucose and energy metabolism. We assessed the effects of recombinant CTSS on metabolism in cultured hepatocytes, myotubes and adipocytes, and in mice following acute CTSS administration. CTSS improved glucose tolerance in lean mice and this coincided with increased plasma insulin. CTSS reduced G6pc and Pck1 mRNA expression and glucose output from hepatocytes but did not affect glucose metabolism in myotubes or adipocytes. CTSS did not affect insulin secretion from pancreatic beta-cells, rather CTSS stimulated glucagon-like peptide (GLP)-1 secretion from intestinal mucosal tissues. CTSS retained its positive effects on glycemic control in mice injected the GLP-1 receptor antagonist exendin (9-39) amide. The effects of CTSS on glycemic control were not retained in high-fat fed mice or db/db mice, despite the preservation of CTSS’ inhibitory actions on hepatic glucose output in isolated primary hepatocytes. In conclusion, we unveil a role for CTSS in the regulation of glycemic control via direct effects on hepatocytes, and that these effects on glycemic control are abrogated in insulin resistant states.

Free access

Sanhua Leng, Wenshuo Zhang, Yanbin Zheng, Ziva Liberman, Christopher J Rhodes, Hagit Eldar-Finkelman, and Xiao Jian Sun

High glucose (HG) has been shown to induce insulin resistance in both type 1 and type 2 diabetes. However, the molecular mechanism behind this phenomenon is unknown. Insulin receptor substrate (IRS) proteins are the key signaling molecules that mediate insulin's intracellular actions. Genetic and biological studies have shown that reductions in IRS1 and/or IRS2 protein levels are associated with insulin resistance. In this study we have shown that proteasome degradation of IRS1, but not of IRS2, is involved in HG-induced insulin resistance in Chinese hamster ovary (CHO) cells as well as in primary hepatocytes. To further investigate the molecular mechanism by which HG induces insulin resistance, we examined various molecular candidates with respect to their involvement in the reduction in IRS1 protein levels. In contrast to the insulin-induced degradation of IRS1, HG-induced degradation of IRS1 did not require IR signaling or phosphatidylinositol 3-kinase/Akt activity. We have identified glycogen synthase kinase 3β (GSK3β or GSK3B as listed in the MGI Database) as a kinase required for HG-induced serine332 phosphorylation, ubiquitination, and degradation of IRS1. Overexpression of IRS1 with mutation of serine332 to alanine partially prevents HG-induced IRS1 degradation. Furthermore, overexpression of constitutively active GSK3β was sufficient to induce IRS1 degradation. Our data reveal the molecular mechanism of HG-induced insulin resistance, and support the notion that activation of GSK3β contributes to the induction of insulin resistance via phosphorylation of IRS1, triggering the ubiquitination and degradation of IRS1.

Free access

Wenpeng Dong, Ye Jia, Xiuxia Liu, Huan Zhang, Tie Li, Wenlin Huang, Xudong Chen, Fuchun Wang, Weixia Sun, and Hao Wu

Oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN). Nuclear factor erythroid 2-related factor 2 (NRF2) plays a key role in cellular defense against oxidative stress. NRF2 activators have shown promising preventive effects on DN. Sodium butyrate (NaB) is a known activator of NRF2. However, it is unknown whether NRF2 is required for NaB protection against DN. Therefore, streptozotocin-induced diabetic C57BL/6 Nrf2 knockout and their wild-type mice were treated in the presence or absence of NaB for 20 weeks. Diabetic mice, but not NaB-treated diabetic mice, developed significant renal oxidative damage, inflammation, apoptosis, fibrosis, pathological changes and albuminuria. NaB inhibited histone deacetylase (HDAC) activity and elevated the expression of Nrf2 and its downstream targets heme oxygenase 1 and NAD(P)H dehydrogenase quinone 1. Notably, deletion of the Nrf2 gene completely abolished NaB activation of NRF2 signaling and protection against diabetes-induced renal injury. Interestingly, the expression of Kelch-like ECH-associated protein 1, the negative regulator of NRF2, was not altered by NaB under both diabetic and non-diabetic conditions. Moreover, NRF2 nuclear translocation was not promoted by NaB. Therefore, the present study indicates, for the first time, that NRF2 plays a key role in NaB protection against DN. Other findings suggest that NaB may activate Nrf2 at the transcriptional level, possibly by the inhibition of HDAC activity.