Search Results

You are looking at 21 - 30 of 3,722 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
  • All content x
Clear All Modify Search
Free access

BD Green, MH Mooney, VA Gault, N Irwin, CJ Bailey, P Harriott, B Greer, FP O'Harte, and PR Flatt

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC(50) values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC(50) 0.37 nM). Similarly, both analogues stimulated cAMP production with EC(50) values of 16.3 and 27 nM respectively compared with GLP-1 (EC(50) 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P<0.05 to P<0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes.

Free access

Rhonda D Prisby, Joshua M Swift, Susan A Bloomfield, Harry A Hogan, and Michael D Delp

Osteopenia and an enhanced risk of fracture often accompany type 1 diabetes. However, the association between type 2 diabetes and bone mass has been ambiguous with reports of enhanced, reduced, or similar bone mineral densities (BMDs) when compared with healthy individuals. Recently, studies have also associated type 2 diabetes with increased fracture risk even in the presence of higher BMDs. To determine the temporal relationship between type 2 diabetes and bone remodeling structural and mechanical properties at various bone sites were analyzed during pre-diabetes (7 weeks), short-term (13 weeks), and long-term (20 weeks) type 2 diabetes. BMDs and bone strength were measured in the femora and tibiae of Zucker diabetic fatty rats, a model of human type 2 diabetes. Increased BMDs (9–10%) were observed in the distal femora, proximal tibiae, and tibial mid- shafts in the pre-diabetic condition that corresponded with higher plasma insulin levels. During short- and long-term type 2 diabetes, various parameters of bone strength and BMDs were lower (9–26%) in the femoral neck, distal femora, proximal tibiae, and femoral and tibial mid-shafts. Correspondingly, blood glucose levels increased by 125% and 153% during short- and long-term diabetes respectively. These data indicate that alterations in BMDs and bone mechanical properties are closely associated with the onset of hyperinsulinemia and hyperglycemia, which may have direct adverse effects on skeletal tissue. Consequently, disparities in the human literature regarding the effects of type 2 diabetes on skeletal properties may be associated with the bone sites studied and the severity or duration of the disease in the patient population studied.

Free access

SJ Conroy, I Green, G Dixon, PM Byrne, J Nolan, YH Abdel-Wahab, N McClenaghan, PR Flatt, and P Newsholme

We have previously reported that newly diagnosed Type-1 diabetic patient sera potently suppressed insulin secretion from a clonal rat pancreatic beta-cell line (BRIN BD11) but did not alter cell viability. Here, we report that apoptosis in BRIN BD11 cells incubated in various sera types (fetal calf serum (FCS), normal human serum and Type-1 diabetic patient) was virtually undetectable. Although low levels of necrosis were detected, these were not significantly different between cells incubated in sera from different sources. ATP levels were reduced by approximately 30% while nitrite production increased twofold from BRIN BD11 cells incubated for 24 h in the presence of Type-1 diabetic patient sera compared with normal human sera. Additionally, ATP levels were reduced by approximately 40% and DNA fragmentation increased by more than 20-fold in BRIN BD11 cells incubated in FCS in the presence of a pro-inflammatory cytokine cocktail (interleukin-1beta, tumour necrosis factor-alpha and interferon-gamma), compared with cells incubated in the absence of cytokines. Nitric oxide production from BRIN BD11 cells was markedly increased (up to 10-fold) irrespective of sera type when the cytokine cocktail was included in the incubation medium. Type-1 diabetic patient sera significantly (P<0.001) raised basal levels of intracellular free Ca(2+ )concentration ([Ca(2+)](i)) in BRIN BD11 cells after a 24-h incubation. The alteration in [Ca(2+)](i) concentration was complement dependent, as removal of the early complement components C1q and C3 resulted in a significant reduction (P<0.01) of sera-induced [Ca(2+)](i )changes. We propose that the mechanism of Type-1 diabetic patient sera-induced inhibition of insulin secretion from clonal beta-cells may involve complement-stimulated elevation of [Ca(2+)](i) which attenuates the nutrient-induced insulin secretory process possibly by desensitizing the cell to further changes in Ca(2+).

Free access

Richard W Nelson and Claudia E Reusch

Diabetes mellitus is a common disease in dogs and cats. The most common form of diabetes in dogs resembles type 1 diabetes in humans. Studies suggest that genetics, an immune-mediated component, and environmental factors are involved in the development of diabetes in dogs. A variant of gestational diabetes also occurs in dogs. The most common form of diabetes in cats resembles type 2 diabetes in humans. A major risk factor in cats is obesity. Obese cats have altered expression of several insulin signaling genes and glucose transporters and are leptin resistant. Cats also form amyloid deposits within the islets of the pancreas and develop glucotoxicity when exposed to prolonged hyperglycemia. This review will briefly summarize our current knowledge about the etiology of diabetes in dogs and cats and illustrate the similarities among dogs, cats, and humans.

Free access

Elisabet Estil.les, Noèlia Téllez, Joan Soler, and Eduard Montanya

Interleukin-1β (IL1B) is an important contributor to the autoimmune destruction of β-cells in type 1 diabetes, and it has been recently related to the development of type 2 diabetes. IGF2 stimulates β-cell proliferation and survival. We have determined the effect of IL1B on β-cell replication, and the potential modulation by IGF2 and glucose. Control-uninfected and adenovirus encoding for IGF2 (Ad-IGF2)-infected rat islets were cultured at 5.5 or 22.2 mmol/l glucose with or without 1, 10, 30, and 50 U/ml of IL1B. β-Cell replication was markedly reduced by 10 U/ml of IL1B and was almost nullified with 30 or 50 U/ml of IL1B. Higher concentrations of IL1B were required to increase β-cell apoptosis. Although IGF2 overexpression had a strong mitogenic effect on β-cells, IGF2 could preserve β-cell proliferation only in islets cultured with 10 U/ml IL1B, and had no effect with 30 and 50 U/ml of IL1B. In contrast, IGF2 overexpression induced a clear protection against IL1B-induced apoptosis, and higher concentrations of the cytokine were needed to increase β-cell apoptosis in Ad-IGF2-infected islets. These results indicate that β-cell replication is highly sensitive to the deleterious effects of the IL1B as shown by the inhibition of replication by relatively low IL1B concentrations, and the almost complete suppression of β-cell replication with high IL1B concentrations. Likewise, the inhibitory effects of IL-β on β-cell replication were not modified by glucose, and were only modestly prevented by IGF2 overexpression, in contrast with the higher protection against IL1B-induced apoptosis afforded by glucose and by IGF2 overexpression.

Free access

Tianru Jin

The proglucagon gene (gcg) encodes a number of peptide hormones that are of cell-type specifically expressed in the pancreatic islets, the distal ileum and the large intestine, as well as certain brain neuronal cells. These hormones are important in controlling blood glucose homeostasis, intestinal cell proliferation, and satiety. More importantly, the major hormone generated in the pancreas (i.e. glucagon) exerts opposite effects to the ones that are produced in the intestines (i.e. glucagon-like peptide-1 (GLP-1) and GLP-2). To understand the mechanisms underlying cell-type-specific gcg expression may lead to the identification of novel drug targets to control endogenous hormone production for therapeutic purposes. Extensive in vitro examinations have shown that more than a half dozen of homeodomain (HD) proteins are able to interact with the gcg gene promoter and activate its expression. In vivo ‘knock-out’ mouse studies, however, cannot demonstrate the role of some of them (i.e. Cdx-2, Brn-4, and Nkx6.2) in the development of pancreatic islet α-cells, suggesting that these HD proteins may exert some redundant functions in the genesis of gcg-producing cells. Investigations have also revealed that gcg expression is controlled by both protein kinase A and Epac signaling pathways in response to cAMP elevation, and cell-type specifically controlled by insulin and the effectors of the Wnt signaling pathway. This review summarizes our current understanding on the mechanisms underlying gcg transcription and presented my interpretations on how the interactions between different signaling networks regulate gcg expression.

Free access

Paige V Bauer and Frank A Duca

The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.

Free access

L M McShane, N Irwin, D O’Flynn, Z J Franklin, C M Hewage, and F P M O’Harte

Ablation of glucagon receptor signaling represents a potential treatment option for type 2 diabetes (T2DM). Additionally, activation of glucose-dependent insulinotropic polypeptide (GIP) receptor signaling also holds therapeutic promise for T2DM. Therefore, this study examined both independent and combined metabolic actions of desHis1Pro4Glu9(Lys12PAL)-glucagon (glucagon receptor antagonist) and d-Ala2GIP (GIP receptor agonist) in diet-induced obese mice. Glucagon receptor binding has been linked to alpha-helical structure and desHis1Pro4Glu9(Lys12PAL)-glucagon displayed enhanced alpha-helical content compared with native glucagon. In clonal pancreatic BRIN-BD11 beta-cells, desHis1Pro4Glu9(Lys12PAL)-glucagon was devoid of any insulinotropic or cAMP-generating actions, and did not impede d-Ala2GIP-mediated (P<0.01 to P<0.001) effects on insulin and cAMP production. Twice-daily injection of desHis1Pro4Glu9(Lys12PAL)-glucagon or d-Ala2GIP alone, and in combination, in high-fat-fed mice failed to affect body weight or energy intake. Circulating blood glucose levels were significantly (P<0.05 to P<0.01) decreased by all treatments regimens, with plasma and pancreatic insulin elevated (P<0.05 to P<0.001) in all mice receiving d-Ala2GIP. Interestingly, plasma glucagon concentrations were decreased (P<0.05) by sustained glucagon inhibition (day 28), but increased (P<0.05) by d-Ala2GIP therapy, with a combined treatment resulting in glucagon concentration similar to saline controls. All treatments improved (P<0.01) intraperitoneal and oral glucose tolerance, and peripheral insulin sensitivity. d-Ala2GIP-treated mice showed increased glucose-induced insulin secretion in response to intraperitoneal and oral glucose. Metabolic rate and ambulatory locomotor activity were increased (P<0.05 to P<0.001) in all desHis1Pro4Glu9(Lys12PAL)-glucagon-treated mice. These studies highlight the potential of glucagon receptor inhibition alone, and in combination with GIP receptor activation, for T2DM treatment.

Free access

Joshua A Kulas, Kendra L Puig, and Colin K Combs

The amyloid precursor protein (APP) has been extensively investigated for its role in the production of amyloid beta (Aβ), a plaque-forming peptide in Alzheimer’s disease (AD). Epidemiological evidence suggests type 2 diabetes is a risk factor for AD. The pancreas is an essential regulator of blood glucose levels through the secretion of the hormones insulin and glucagon. Pancreatic dysfunction is a well-characterized consequence of type 1 and type 2 diabetes. In this study, we have examined the expression and processing of pancreatic APP to test the hypothesis that APP may play a role in pancreatic function and the pathophysiology of diabetes. Our data demonstrate the presence of APP within the pancreas, including pancreatic islets in both mouse and human samples. Additionally, we report that the APP/PS1 mouse model of AD overexpresses APP within pancreatic islets, although this did not result in detectable levels of Aβ. We compared whole pancreas and islet culture lysates by Western blot from C57BL/6 (WT), APP−/− and APP/PS1 mice and observed APP-dependent differences in the total protein levels of GLUT4, IDE and BACE2. Immunohistochemistry for BACE2 detected high levels in pancreatic α cells. Additionally, both mouse and human islets processed APP to release sAPP into cell culture media. Moreover, sAPP stimulated insulin but not glucagon secretion from islet cultures. We conclude that APP and its metabolites are capable of influencing the basic physiology of the pancreas, possibly through the release of sAPP acting in an autocrine or paracrine manner.

Free access

Sachiko Kitanaka, Utako Sato, and Takashi Igarashi

Mutations in hepatocyte nuclear factor-1β (HNF-1β) lead to type 5 maturity-onset diabetes of the young (MODY5). Moreover, mutations in the HNF-1β gene might cause multiorgan abnormalities including renal diseases, genital malformations, and abnormal liver function. The objective of this study was to investigate the molecular mechanism of diabetes mellitus, intrauterine growth retardation, and cholestasis observed in MODY5 patients. We analyzed the transactivity of wild-type and three mutant HNF-1β on native human insulin, IGF-I, and multidrug resistance protein 2 (MRP2) promoters in combination with HNF-1α, using a reporter-assay system in transiently transfected mammalian cells. In the human insulin gene promoter, we found that the cooperation of HNF-1α and HNF-1β is prominent. Absence of this cooperation was observed in all of the HNF-1β mutants. In the human IGF-I and MRP2 promoters, we found that the HNF-1β His153Asn (H153N) mutant had a mutant-specific repressive effect on both HNF-1α and wild-type HNF-1β transactivity. Absence of the cooperation of HNF-1β mutants with HNF-1α in the human insulin gene promoter might be one cause of defective insulin secretion. The H153N mutant-specific repression of HNF-1α and HNF-1β transactivity in human IGF-I and MRP2 promoters might explain the case-specific clinical features of growth retardation and cholestasis observed only in early infancy. We found differential property of HNF-1α/HNF-1β activity and the effect of HNF-1β mutants by the promoters. We consider that analyses of HNF-1β mutants on the intended human native promoters in combination with HNF-1α may be useful in investigating the molecular mechanisms of the various features in MODY5.