Search Results

You are looking at 81 - 90 of 3,721 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
  • All content x
Clear All Modify Search
Restricted access

D. Janjic and M. Asfari

ABSTRACT

To investigate further the role of cytokines in the pathogenesis of type I insulin-dependent diabetes mellitus, the effects of interleukin-1β (IL-1), tumour necrosis factor-α (TNF) and γ-interferon (IFN) were tested on rat insulinoma INS-1 cells. Whereas TNF and IFN had, respectively, a minor or no effect on insulin production, IL-1 caused a time- and dose-dependent decrease in insulin release and lowered the insulin content as well as the preproinsulin mRNA content of INS-1 cells. Both IL-1 and TNF exerted a cytostatic effect, estimated by a decrease in [3H]thymidine incorporation, while only IL-1 decreased cell viability as measured by the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test.

The glutathione content of INS-1 cells was shown to be modulated by the presence of 2-mercaptoethanol in the culture medium, but was not affected by IL-1 or TNF.

In conclusion, INS-1 cell culture is considered to be a useful model for studying the effect of cytokines on insulin-producing cells. The differentiated features of these cells will permit several questions to be addressed regarding the mechanism of action of IL-1 and eventually other cytokines, both at the level of gene expression and of intracellular signalling.

Journal of Endocrinology (1992) 132, 67–76

Free access

Qinkai Li, Weidong Yin, Manbo Cai, Yi Liu, Hongjie Hou, Qingyun Shen, Chi Zhang, Junxia Xiao, Xiaobo Hu, Qishisan Wu, Makoto Funaki, and Yutaka Nakaya

Insulin resistance and dyslipidemia are both considered to be risk factors for metabolic syndrome. Low levels of IGF1 are associated with insulin resistance. Elevation of low-density lipoprotein cholesterol (LDL-C) concomitant with depression of high-density lipoprotein cholesterol (HDL-C) increase the risk of obesity and type 2 diabetes mellitus (T2DM). Liver secretes IGF1 and catabolizes cholesterol regulated by the rate-limiting enzyme of bile acid synthesis from cholesterol 7α-hydroxylase (CYP7A1). NO-1886, a chemically synthesized lipoprotein lipase activator, suppresses diet-induced insulin resistance with the improvement of HDL-C. The goal of the present study is to evaluate whether NO-1886 upregulates IGF1 and CYP7A1 to benefit glucose and cholesterol metabolism. By using human hepatoma cell lines (HepG2 cells) as an in vitro model, we found that NO-1886 promoted IGF1 secretion and CYP7A1 expression through the activation of signal transducer and activator of transcription 5 (STAT5). Pretreatment of cells with AG 490, the inhibitor of STAT pathway, completely abolished NO-1886-induced IGF1 secretion and CYP7A1 expression. Studies performed in Chinese Bama minipigs pointed out an augmentation of plasma IGF1 elicited by a single dose administration of NO-1886. Long-term supplementation with NO-1886 recovered hyperinsulinemia and low plasma levels of IGF1 suppressed LDL-C and facilitated reverse cholesterol transport by decreasing hepatic cholesterol accumulation through increasing CYP7A1 expression in high-fat/high-sucrose/high-cholesterol diet minipigs. These findings indicate that NO-1886 upregulates IGF1 secretion and CYP7A1 expression to improve insulin resistance and hepatic cholesterol accumulation, which may represent an alternative therapeutic avenue of NO-1886 for T2DM and metabolic syndrome.

Free access

Tao Xie, Min Chen, and Lee S Weinstein

The ubiquitously expressed G protein α-subunit Gsα mediates the intracellular cAMP response to glucagon-like peptide 1 (GLP1) and other incretin hormones in pancreatic islet cells. We have shown previously that mice with β-cell-specific Gsα deficiency (βGsKO) develop severe early-onset insulin-deficient diabetes with a severe defect in β-cell proliferation. We have now generated mice with Gsα deficiency throughout the whole pancreas by mating Gsα-floxed mice with Pdx1-cre transgenic mice (PGsKO). PGsKO mice also developed severe insulin-deficient diabetes at a young age, confirming the important role of Gsα signaling in β-cell growth and function. Unlike in βGsKO mice, islets in PGsKO mice had a relatively greater proportion of α-cells, which were spread throughout the interior of the islet. Similar findings were observed in mice with pancreatic islet cell-specific Gsα deficiency using a neurogenin 3 promoter-cre recombinase transgenic mouse line. Studies in the α-cell line αTC1 confirmed that reduced cAMP signaling increased cell proliferation while increasing cAMP produced the opposite effect. Therefore, it appears that Gsα/cAMP signaling has opposite effects on pancreatic α- and β-cell proliferation, and that impaired GLP1 action in α- and β-cells via Gsα signaling may be an important contributor to the reciprocal effects on insulin and glucagon observed in type 2 diabetics. In addition, PGsKO mice show morphological changes in exocrine pancreas and evidence for malnutrition and dehydration, indicating an important role for Gsα in the exocrine pancreas as well.

Free access

Junhong Chen, Jing Sun, Michelle E Doscas, Jin Ye, Ashley J Williamson, Yanchun Li, Yi Li, Richard A Prinz, and Xiulong Xu

p70 S6 kinase (S6K1) is a serine/threonine kinase that phosphorylates the insulin receptor substrate-1 (IRS-1) at serine 1101 and desensitizes insulin receptor signaling. S6K1 hyperactivation due to overnutrition leads to hyperglycemia and type 2 diabetes. Our recent study showed that A77 1726, the active metabolite of the anti-rheumatoid arthritis (RA) drug leflunomide, is an inhibitor of S6K1. Whether leflunomide can control hyperglycemia and sensitize the insulin receptor has not been tested. Here we report that A77 1726 increased AKTS473/T308 and S6K1T389 phosphorylation but decreased S6S235/236 and IRS-1S1101 phosphorylation in 3T3-L1 adipocytes, C2C12 and L6 myotubes. A77 1726 increased insulin receptor tyrosine phosphorylation and binding of the p85 subunit of the PI-3 kinase to IRS-1. A77 1726 enhanced insulin-stimulated glucose uptake in L6 myotubes and 3T3-L1 adipocytes, and enhanced insulin-stimulated glucose transporter type 4 (GLUT4) translocation to the plasma membrane of L6 cells. Finally, we investigated the anti-hyperglycemic effect of leflunomide on ob/ob and high-fat diet (HFD)-induced diabetes mouse models. Leflunomide treatment normalized blood glucose levels and overcame insulin resistance in glucose and insulin tolerance tests in ob/ob and HFD-fed mice but had no effect on mice fed a normal chow diet (NCD). Leflunomide treatment increased AKTS473/T308 phosphorylation in the fat and muscle of ob/ob mice but not in normal mice. Our results suggest that leflunomide sensitizes the insulin receptor by inhibiting S6K1 activity in vitro, and that leflunomide could be potentially useful for treating patients with both RA and diabetes.

Restricted access

M G Cavallo, F Dotta, L Monetini, S Dionisi, M Previti, L Valente, A Toto, U Di Mario, and P Pozzilli

Abstract

In the present study we have evaluated the expression of different beta-cell markers, islet molecules and autoantigens relevant in diabetes autoimmunity by a human insulinoma cell line (CM) in order to define its similarities with native beta cells and to discover whether it could be considered as a model for studies on immunological aspects of Type 1 diabetes.

First, the positivity of the CM cell line for known markers of neuroendocrine derivation was determined by means of immunocytochemical analysis using different anti-islet monoclonal antibodies including A2B5 and 3G5 reacting with islet gangliosides, and HISL19 binding to an islet glycoprotein. Secondly, the expression and characteristics of glutamic acid decarboxylase (GAD) and of GM2-1 ganglioside, both known to be islet autoantigens in diabetes autoimmunity and expressed by human native beta cells, were investigated in the CM cell line. The pattern of ganglioside expression in comparison to that of native beta cells was also evaluated. Thirdly, the binding of diabetic sera to CM cells reacting with islet cytoplasmic antigens (ICA) was studied by immunohistochemistry. The results of this study showed that beta cell markers identified by anti-islet monoclonal antibodies A2B5, 3G5 and HISL-19 are expressed by CM cells; similarly, islet molecules such as GAD and GM2-1 ganglioside are present and possess similar characteristics to those found in native beta cells; the pattern of expression of other gangliosides by CM cells is also identical to human pancreatic islets; beta cell autoantigen(s) reacting with antibodies present in islet cell antibodies (ICA) positive diabetic sera identified by ICA binding are also detectable in this insulinoma cell line.

We conclude that CM cells show close similarities to native beta cells with respect to the expression of neuroendocrine markers, relevant beta cell autoantigens in Type 1 diabetes (GAD, GM2-1, ICA antigen), and other gangliosides. Therefore, this insulinoma cell line may be considered as an ideal model for studies aimed at investigating autoimmune phenomena occurring in Type 1 diabetes.

Journal of Endocrinology (1996) 150, 113–120

Free access

Monisha Rajasekaran, Ok-Joo Sul, Eun-Kyung Choi, Ji-Eun Kim, Jae-Hee Suh, and Hye-Seon Choi

Obesity is strongly associated with chronic inflammation for which adipose tissue macrophages play a critical role. The objective of this study is to identify monocyte chemoattractant protein-1 (MCP-1, CCL2) as a key player governing M1–M2 macrophage polarization and energy balance. We evaluated body weight, fat mass, adipocyte size and energy expenditure as well as core body temperature of Ccl2 knockout mice compared with wild-type mice. Adipose tissues, differentiated adipocyte and bone marrow-derived macrophages were assessed by qPCR, Western blot analysis and histochemistry. MCP-1 deficiency augmented energy expenditure by promoting browning in white adipose tissue and brown adipose tissue activity via increasing the expressions of Ucp1, Prdm16, Tnfrsf9, Ppargc1a, Nrf1 and Th and mitochondrial DNA copy number. MCP-1 abrogation promoted M2 polarization which is characterized by increased expression of Arg1, Chil3, Il10 and Klf4 whereas it decreased M1 polarization by decreased p65 nuclear translocation and attenuated expression of Itgax, Tnf and Nos2, leading to increased browning of adipocytes. Enhanced M2 polarization and attenuated M1 polarization in the absence of MCP-1 are independent. Collectively, our results suggest that the action of MCP-1 in macrophages modulates energy expenditure by impairing browning in adipose tissue.

Free access

Jae Woo Jung, Chihoon Ahn, Sun Young Shim, Peter C Gray, Witek Kwiatkowski, and Senyon Choe

Activins and bone morphogenetic proteins (BMPs) share activin type 2 signaling receptors but utilize different type 1 receptors and Smads. We designed AB215, a potent BMP2-like Activin A/BMP2 chimera incorporating the high-affinity type 2 receptor-binding epitope of Activin A. In this study, we compare the signaling properties of AB215 and BMP2 in HEK293T cells and gonadotroph LβT2 cells in which Activin A and BMP2 synergistically induce FSHβ. In HEK293T cells, AB215 is more potent than BMP2 and competitively blocks Activin A signaling, while BMP2 has a partial blocking activity. Activin A signaling is insensitive to BMP pathway antagonism in HEK293T cells but is strongly inhibited by constitutively active (CA) BMP type 1 receptors. By contrast, the potencies of AB215 and BMP2 are indistinguishable in LβT2 cells and although AB215 blocks Activin A signaling, BMP2 has no inhibitory effect. Unlike HEK293T, Activin A signaling is strongly inhibited by BMP pathway antagonism in LβT2 cells but is largely unaffected by CA BMP type 1 receptors. BMP2 increases phospho-Smad3 levels in LβT2 cells, in both the absence and the presence of Activin A treatment, and augments Activin A-induced FSHβ. AB215 has the opposite effect and sharply decreases basal phospho-Smad3 levels and blocks Smad2 phosphorylation and FSHβ induction resulting from Activin A treatment. These findings together demonstrate that while AB215 activates the BMP pathway, it has opposing effects to those of BMP2 on FSHβ induction in LβT2 cells apparently due to its ability to block Activin A signaling.

Free access

DR Brigstock

The CCN family comprises cysteine-rich 61 (CYR61/CCN1), connective tIssue growth factor (CTGF/CCN2), nephroblastoma overexpressed (NOV/CCN3), and Wnt-induced secreted proteins-1 (WISP-1/CCN4), -2 (WISP-2/CCN5) and -3 (WISP-3/CCN6). These proteins stimulate mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Many of these activities probably occur through the ability of CCN proteins to bind and activate cell surface integrins. Accumulating evidence supports a role for these factors in endocrine pathways and endocrine-related processes. To illustrate the broad role played by the CCN family in basic and clinical endocrinology, this Article highlights the relationship between CCN proteins and hormone action, skeletal growth, placental angiogenesis, IGF-binding proteins and diabetes-induced fibrosis.

Free access

Ruben Rodriguez, Jacqueline N Minas, Jose Pablo Vazquez-Medina, Daisuke Nakano, David G Parkes, Akira Nishiyama, and Rudy M Ortiz

Obesity is associated with the inappropriate activation of the renin-angiotensin system (RAS), which increases arterial pressure, impairs insulin secretion and decreases peripheral tissue insulin sensitivity. RAS blockade reverses these detriments; however, it is not clear whether the disease state of the organism and treatment duration determine the beneficial effects of RAS inhibition on insulin secretion and insulin sensitivity. Therefore, the objective of this study was to compare the benefits of acute vs chronic angiotensin receptor type 1 (AT1) blockade started after the onset of obesity, hyperglycemia and hypertension on pancreatic function and peripheral insulin resistance. We assessed adipocyte morphology, glucose intolerance, pancreatic redox balance and insulin secretion after 2 and 11 weeks of AT1 blockade in the following groups of rats: (1) untreated Long-Evans Tokushima Otsuka (lean control; n = 10), (2) untreated Otsuka Long-Evans Tokushima Fatty (OLETF; n = 12) and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day by oral gavage; n = 12). Regardless of treatment duration, AT1 blockade decreased systolic blood pressure and fasting plasma triglycerides, whereas chronic AT1 blockade decreased fasting plasma glucose, glucose intolerance and the relative abundance of large adipocytes by 22, 36 and 70%, respectively. AT1 blockade, however, did not improve pancreatic oxidative stress or reverse impaired insulin secretion. Collectively, these data show that AT1 blockade after the onset of obesity, hyperglycemia and hypertension improves peripheral tissue insulin sensitivity, but cannot completely reverse the metabolic derangement characterized by impaired insulin secretion once it has been compromised.

Free access

E Zoidis, C Ghirlanda-Keller, M Gosteli-Peter, J Zapf, and C Schmid

In osteoblasts only the type III Na(+)-dependent phosphate (NaPi) transporter isoforms Pit-1 and Pit-2 have been identified. We tested the effects of extracellular Pi, Ca(2+) and IGF-I on Na(d)Pi transport and Pit-1 or Pit-2 mRNA expression in rat osteoblastic (PyMS) cells. The v(max) of Na(d)Pi transport was higher in cells kept in Pi-free, serum-free medium for 24 h than in controls at 1 mM Pi (2.47+/-0.20 vs 1.83+/-0.17 nmol/mg protein x 10 min). The apparent affinity constant (K(M)) for Pi remained unchanged. Pi withdrawal for 24 h did not impair cell viability whereas increasing the extracellular Pi to 5 mM resulted in cell death. Pit-1 (but not Pit-2) mRNA was upregulated following Pi deprivation, Ca(2+) treatment or after treatment with 1 nM IGF-I, known to stimulate Na(d)Pi transport and cell proliferation. IGF-I also stimulated Na(d)Pi transport and Pit-1 mRNA in primary rat calvarial osteoblasts. Expression of Pit-1 mRNA in vivo and the coordinate regulation of Pit-1 mRNA and Pi transport in osteoblastic cells suggest that Pit-1 is a candidate transporter of physiological relevance in bone.